Tiếng Việt

Một phần của tài liệu Một số vấn đề về phương trình toán tử ngẫu nhiên (Trang 75)

[1] Nguyễn Viết Phú, Nguyễn Duy Tiến (2004), Cơ sở lý thuyết xác suất, Nhà xuất bản Đại học Quốc gia Hà Nội.

[2] Đặng Hùng Thắng (2006), Quá trình ngẫu nhiên và tính toán ngẫu

nhiên, Nhà xuất bản Đại học Quốc gia Hà Nội.

[3] Nguyễn Duy Tiến, Đặng Hùng Thắng (2001), Các mô hình xác suất

và ứng dụng phần II: Quá trình dừng và ứng dụng, Nhà xuất bản

Đại học Quốc gia Hà Nội.

[4] Nguyễn Duy Tiến (2001), Các mô hình xác suất và ứng dụng phần

III: Giải tích ngẫu nhiên, Nhà xuất bản Đại học Quốc gia Hà Nội.

[5] Nguyễn Duy Tiến, Vũ Việt Yên (2000), Lý thuyết xác suất, Nhà xuất bản Giáo dục.

Tiếng Anh

[6] Abbas M. (2005), Solution of random operator equations and in- clusions, Ph.D. thesis, National College of Business Administration and Economics, Parkistan.

[7] Agarwal R. P., Meehan M., O’regan D. (2004), Fixed point theory and applications, Cambridge university press.

[8] Al-Thagafi M. A., Shahzad N. (2007), "Coincidence points, general- ized I-nonexpansive multimaps and applications", Nonlinear Anal.

67 (7), pp. 2180–2188.

[9] Anh T. N. (2010), "Random fixed points of probabilistic contrac- tions and applications to random equations", Vietnam J. Math. 38

(2), pp. 227–235.

[10] Anh T. N. (2011), "Common random fixed points of random oper- ators", submitted.

[11] Anh T. N. (2011), "Random equations and applications to general random fixed point theorems", New Zealand J. Math. 41, 17–24. [12] Basha S. S. (2011), "Best proximity points: global optimal approxi-

mate solutions", J. Glob. Optim. 49 (1), pp. 15–21.

[13] Beg I., Abbas M. (2008), "Random fixed points of asymptotically nonexpansive random operators on unbounded domains", Math.

Slovaca 58 (6), pp. 755–762.

[14] Beg I., Shahzad N. (1994), "Random fixed point theorems for nonex- pansive and contractive-type random operators on Banach spaces",

J. Appl. Math. Stoch. Anal. 7 (4), pp. 569–580.

[15] Benavides T. D., Acedo G. L., Xu H. K. (1996), "Random fixed points of set-valued operators", Proc. Amer. Math. Soc. 124 (3), pp. 831–838.

[16] Benavides T. D., Ramirez P. L. (2001), "Structure of the fixed point set and common fixed points of asymptotically nonexpansive map- pings", Proc. Amer. Math. Soc. 129 (12), pp. 3549–3557.

[17] Berinde V. (2007), Iterative approximation of fixed points, Springer. [18] Bharucha Reid A. T. (1964),Lectures on theory of random equations,

Madras, Institute of Mathematical Sciences.

[19] Bharucha Reid A. T. (1972), Random integral equations, Academic Press, New York and London.

[20] Bharucha Reid A. T. (1976), "Fixed point theorems in probabilistic analysis", Bull. Amer. Math. Soc. 82 (5), pp. 641–657.

[21] Browder F. E. (1963), "The solvability of nonlinear functional equa- tions", Duke Math. J. 30, pp. 557–566.

[22] Browder F. E. (1963), "Nonlinear elliptic boundary value problems",

Bull. Amer. Math. Soc. 69, pp. 862–874.

[23] Castaing C., Valadier M. (1977), Convex analysis and measurable

multifunctions in Lecture notes in matheatics, Edited by A. Dold

and B. Eckmann, Springer-Verlag Berlin - Heidelberg - New York. [24] Chandra M., Mishra S. N., Singh S. L., Rhoades B. E. (1995), "Co-

incidence and fixed points of nonexpansive type multi-valued and single-valued maps", Indian J. Pure Appl. Math. 26 (5), pp. 393– 401.

[25] Chang S. S. (1983), "Some random fixed point theorems for conti- nous random operators", Pacific J. Math. 105 (1), pp. 21–31. [26] Chidume C. (2009),Geometric properties of Banach spaces and non-

linear iterations, Springer.

[27] Chugh R., Kumar S. (2001), "Common fixed points for weakly com- patible maps", Proc. Indian Acad. Sci. Math. Sci.111 (2), pp. 241– 247.

[28] Ciric L. B. (1993), "On some nonexpansive type mappings and fixed points", Indian J. Pure Appl. Math. 24 (3), pp. 145–149.

[29] Ciric L. B., Lakshmikantham V. (2009), "Coupled random fixed point theorems for nonlinear contractions in partially ordered metric spaces", Stoch. Anal. Appl. 27 (6), pp. 1246–1259.

[30] Ciric L. B., Ume J. S., Jesic S. N. (2006), "On random coincidence and fixed points for a pair of multivalued and single-valued map- pings", J. Inequal. Appl. (Hindawi Publ. Corp.) Article ID 81045,

2006, pp. 1–12.

[31] Engl H. W., Romisch W. (1985), "Approximate solutions of nonlin- ear random operator equations: Convergence in distribution", Pa- cific J. Math. 120 (1), pp. 55–77.

[32] Granas A., Dugundji J. (2003), Fixed point theory, Springer.

[33] Hadzic O., Pap E. (2001), Fixed point theory in probabilistic metric

[34] Hadzic O., Pap E., Budincevic M. (2005), "A generalization of Tardiff’s fixed point theorem in probabilistic metric spaces and ap- plications to random equations", Fuzzy Sets and Systems 156, pp. 124–134.

[35] Hans O. (1957), "Random fixed point theorems", Trans. 1st Prague Conf. on Information Theory, Statist. Decision Function, and Ran- dom process (Liblice, 1956), Czechoslovak Acad. Sci., Prague, pp. 105–125.

[36] Hans O. (1960), "Random operator equation", Proc. 4th Berkely

Sympos. on Math. Statist. and Probab., Univ. of California Press,

Berkely, Calif. 2, pp. 185–202.

[37] Himmelberg C. J. (1975), "Measurable relations", Fund. Math. 87, pp. 53–72.

[38] Itoh S. (1977), "A random fixed point theorem for a multivalued contraction mapping", Pacific J. Math. 68 (1), pp. 85–90.

[39] Itoh S. (1978), "Nonlinear random equations with monotone opera- tors in Banach spaces", Math. Ann. 236, pp. 133–146.

[40] Itoh S. (1979), "Measurable or condensing multivalued mappings and random fixed point theorems", Kodai Math. J. 2, pp. 293–299. [41] Itoh S., Takahashi W. (1978), "The common fixed point theory of singlevalued mappings and multivalued mappings", Pacific J. Math.

[42] Joshi M. (1980), "Nonlinear random equations with P-compact op- erators in Banach spaces", Indian J. Pure Appl. Math. 11 (6), pp. 791–799.

[43] Kaneko H., Sessa S. (1989), "Fixed point theorems for compatible multi-valued and single-valued mappings",Internat. J. Math. Math. Sci. 12 (2), pp. 257–262.

[44] Karamolegos A., Kravvaritis D. (1992), "Nonlinear random operator equations and inequalities in Banach spaces", Internat. J. Math.

Math. Sci. 15 (1), pp. 111–118.

[45] Khan A. R., Akbar F., Sultana N., Hussain N. (2006), "Coin- cidence and invariant approximation theorems for generalized f- nonexpansive multivalued mappings",Internat. J. Math. Math. Sci., Hindawi Publ. Corp., Article ID17637, 2006, pp. 1–18.

[46] Khan A. R., Domlo A. A., Hussain N. (2007), "Coincidences of Lipschitz-type hybrid maps and invariant approximation", Numer.

Funct. Anal. Optim. 28 (9-10), pp. 1165–1177.

[47] Khan A. R., Hussain N. (2004), "Random coincidence point theorem in Frechet spaces with applications", Stoch. Anal. Appl. 22 (1), pp. 155–167.

[48] Kolmogorov A. N., Fomin S. V. (1970), Introductory real analysis, Dover Publications, Inc New York.

[49] Kumam P. (2004), "Fixed point theorem and random fixed point theorem for set-valued non-self mappings", Thai J. Math. 2 (2), pp. 295–307.

[50] Kumam P., Plubtieng S. (2006), "Some random fixed point theorems for non-self nonexpansive random operators",Turk J. Math. 30, pp. 359–372.

[51] Latif A., Al-Mezel S. A. (2008), "Coincidence and fixed point results for non-commuting maps", Tamkang J. Math. 39 (2), pp. 105–110. [52] Lin T. C. (1988), "Random approximations and random fixed point theorems for non-self-maps", Proc. Amer. Math. Soc. 103 (4), pp. 1129–1135.

[53] Mustafa G., Noshi N. A., Rashid A. (2005), "Some random coin- cidence and random fixed point theorems for hybrid contractions",

Lobachevskii J. Math. 18, pp. 139–149.

[54] Nashed M. Z., Engl H. W. (1979), "Random generalized inverses and approximate solution of random operator equations", in: Ap- proximate solution of random equations, A. T. Bharucha Reid (ed.), pp. 149–210, Elsevier North - Holland, Inc New York.

[55] Nashed M. Z., Salehi H. (1973), "Measurability of generalized in- verses of random linear operators", SIAM J. Appl. Math. 25 (4), pp. 681–692.

[56] Nashine H. K. (2008), "Random fixed points and invariant random approximation in non-convex domains", Hacettepe J. Math. Statist.

37 (2), pp. 81–88.

[57] Nashine H. K. (2010), "Random coincidence points, invariant approximation theorems, nonstarshaped domain and q-normed spaces", Random Oper. Stoch. Equ. 18, pp. 165–183.

[58] O’Regan D., Shahzad N., Agarwal R. P. (2003), "Random fixed point theory in spaces with two metrics", J. Appl. Math. Stoch. Anal. 16 (2), pp. 171–176.

[59] Papageorgiou N. S., Kyritsi-Yiallourou S. Th. (2009), Hanbook of applied analysis, Springer.

[60] Sehgal V. M., Waters C. (1984), "Some random fixed point theorems for condensing operators", Proc. Amer. Math. Soc. 90 (3), pp. 425– 429.

[61] Shahzad N. (1995), Random fixed points and approximations, Ph.D. thesis, Quaid-I-Azam University, Islamabad Parkistan.

[62] Shahzad N. (2002), "Random fixed points of multivalued maps in Frechet spaces", Arch. Math. (Brno) 38, pp. 95–100.

[63] Shahzad N. (2004), "Some general random coincidence point theo- rems", New Zealand J. Math. 33 (1), pp. 95–103.

[64] Shahzad N. (2005), "Random fixed points of discontinuous random maps", Math. Comput. Modelling 41, pp. 1431–1436.

[65] Shahzad N. (2008), "Random fixed point results for continuous pseudo-contractive random maps", Indian J. Math.50 (2), pp. 263– 271.

[66] Shahzad N., Latif A. (2000), "A random coincidence point theorem",

J. Math. Anal. Appl. 245, pp. 633–638.

[67] Shahzad N., Hussain N. (2006), "Deterministic and random coinci- dence point results for f-nonexpansive maps", J. Math. Anal. Appl.

323, pp. 1038–1046.

[68] Shiryaev A. N. (1996), Probability, Springer.

[69] Singh S. L., Ha K. S., Cho Y. J. (1989), "Coincidence and Fixed points of nonlinear hybrid contractions", Internat. J. Math. Math. Sci. 12 (2), pp. 247–256.

[70] Spacek A. (1955), "Zufallige Gleichungen" (Random equations),

Czechoslovak Math. J. 5 (4), pp. 462–466.

[71] Tan K. K., Yuan X. Z. (1993), "On deterministic and random fixed points", Proc. Amer. Math. Soc. 119 (3), pp. 849–856.

[72] Tarafdar E., Watson P., Yuan X. Z. (1997), "The measurability of caratheodory set-valued mappings and random fixed point theo- rems", Acta Math. Hungar. 74 (4), pp. 309–319.

[73] Thang D. H., Anh T. N. (2010), "On random equations and applica- tions to random fixed point theorems," Random Oper. Stoch. Equ.

[74] Thang D. H., Anh T. N. (2010), "Some results on random equa- tions", Vietnam J. Math. 38 (1), pp. 35–44.

[75] Thang D. H., Thinh N. (2004), "Random bounded operators and their extension", Kyushu J. Math. 58, pp. 257–276.

[76] Verma R. U. (1997), "Stochastic approximation-solvability of lin- ear random equations involving numerical ranges", J. Appl. Math. Stoch. Anal. 10 (1), pp. 47–55.

[77] Xu H. K. (1990), "Some random fixed point theorems for condensing and nonexpansive operators", Proc. Amer. Math. Soc. 110 (2), pp. 395–400.

[78] Xu H. K. (1993), "A random fixed point theorem for multivalued nonexpansive operators in uniformly convex Banach spaces", Proc.

Amer. Math. Soc. 117 (4), pp. 1089–1092.

[79] Yosida K. (1980), Functional analysis, Springer-Verlag Berlin Hei- delberg New York.

[80] Yuan X. Z., Lou X., Li G. (1996), "Random approximations and fixed point theorems", J. Approx. Theory, 84, pp. 172–187.

[81] Wagner D. H. (1977), "Survey of measurable selection theorems",

Chỉ số

σ-đại số, 6 đầy đủ, 6 Borel, 6

Ánh xạ đa trị đo được, 8 Ánh xạ đo được, 7

Đồ thị của ánh xạ, 8 Độ đo xác suất, 6 Điểm bất động, 12, 51

Điểm bất động chung, 12, 65 Điểm bất động ngẫu nhiên, 36, 43

chung, 37, 44 Điểm trùng nhau, 13

ngẫu nhiên, 44

Điểm xấp xỉ ngẫu nhiên tốt nhất, 40

Điểm xấp xỉ tốt nhất, 15 Đo được yếu, 8

Bị chặn theo xác suất, 56

Bản sao của toán tử ngẫu nhiên, 10 Biến ngẫu nhiên, 7

Có nghiệm ngẫu nhiên, 17, 29 với hầu hết ω, 17, 28 Có tính co, 15 Co xác suất, 51 Giao hoán, 13, 64 Hàm chọn, 8 Hàm ngẫu nhiên, 9 Không giãn, 51 xác suất, 51 Không gian đo được, 6 xác suất, 6 xác suất đầy đủ, 6 mẫu, 6

Không gian Polish, 7 Khoảng cách Hausdorff, 7 Liên tục, 50

Lipschitz, 50 xác suất, 50

Nghiệm ngẫu nhiên, 18, 29 Nghiệm tất định, 17, 29 Phương trình ngẫu nhiên, 16

đơn trị, 17 đa trị, 28 có nhiễu, 17 Quỹ đạo, 10, 56 Tập đo được, 6 Tương thích, 13

Toán tử hoàn toàn ngẫu nhiên, 50 Toán tử Nemytskij, 49

Toán tử ngẫu nhiên, 9 đa trị, 10

đa trị đo được, 11 đa trị liên tục, 11 đo được, 10 co, 11 liên tục, 11 Lipschitz, 11 Xác suất, 6

Một phần của tài liệu Một số vấn đề về phương trình toán tử ngẫu nhiên (Trang 75)

Tải bản đầy đủ (PDF)

(86 trang)