IV Phương trỡnh đường trũn
2 Hai đường thẳng song song
A Lí THUYẾT
1 Vị trớ tương đối của hai đường thẳng trong khụng gian Định nghĩa Định nghĩa
- Hai đường thẳng được gọi là đồng phẳng nếu cú một mặt phẳng chứa cả hai đường thẳng đú.
- Hai đường thẳng gọi là chộo nhau nếu chỳng khụng đồng phẳng.
- Hai đường thẳng gọi là song song nếu chỳng đồng phẳng và khụng cú điểm chung.
2 Hai đường thẳng song song
Tớnh chất 1 Trong khụng gian, qua một điểm nằm ngoài một đường thẳng cú một và chỉ một đường thẳng song song với đường thẳng đú.
Tớnh chất 2 Hai đường thẳng phõn biệt cựng song song với một đường thẳng thứ ba thỡ song song nhau.
Định lớ (về giao tuyến của ba mặt phẳng) Nếu ba mặt phẳng phõn biệt đụi một cắt nhau theo ba giao tuyến phõn biệt thỡ ba giao tuyến ấy đồng quy hoặc đụi một song song.
GV: Trần Văn Chung Trường THPT Hoàng Văn Thu Nha Trang - ĐT: 0972.311.481
Hệ quả Nếu hai mặt phẳng cắt nhau lần lượt chứa hai đường thẳng song song thỡ giao tuyến của chỳng song song với hai đường thẳng đú (hoặc trựng với một trong hai đường thẳng đú).
P P
Phương phỏp xỏc định giao tuyến của hai mặt phẳng (PP2) B1 Chỉ ra một điểm chung của hai mặt phẳng.
B2 Chứng minh giao tuyến song song với một đường thẳng cho trước Từ đú giao tuyến được xỏc định (theo tớnh chất 1).
B BÀI TẬP
Vấn đề 1 : CHỨNG MINH HAI ĐƯỜNG THẲNG SONG SONG
2. 38 Cho tứ diện ABCD. Gọi M, N, P, Q lần lượt là trung điểm cỏc cạnh AB, BC, CD, DA. Chứng minh rằng bấn điểm M, N, P, Q cựng nằm trờn một mặt phẳng và tứ giỏc MNPQ là hỡnh bỡnh hành. rằng bấn điểm M, N, P, Q cựng nằm trờn một mặt phẳng và tứ giỏc MNPQ là hỡnh bỡnh hành.