Hình 3.13: Sơ đồ điều khiển hệ BÓNG - TAY ĐÒN bằng bộ điều khiển mờ
Sơ đồ thí nghiệm nhƣ hình 3.13. Trong thí nghiệm này, ta thay bộ điều khiển G1 bằng bộ điều khiển mờ thích nghi. Nhƣ vậy mạch vòng trong vẫn sử dụng phƣơng pháp điều khiển kinh điển còn mạch vòng ngoài là điều khiển mờ thích nghi. Để kết nối bộ điều khiển mờ vào hệ thống ta dùng CARD chuyển đổi NI USB 6008 và dùng phần mền MATLAB điều khiển thực. Đặc tính động của hệ thống ứng với vị trí đặt cố định đƣợc chỉ ra trên hình 3.13, đặc tính điều chỉnh đƣợc chỉ ra trên hình 3.14. 10 20 30 40 50 t(s) -1 -0.8 -0.6 -0.4 -0.2 0 0.2 Vị trí
Hình 3.13: Đặc tính động của hệ thống khi sử dụng bộ điều khiển mờ thích nghi ở vòng ngoài với giá trị đặt không đổi
Số hóa bởi Trung tâm Học liệu http://www.lrc-tnu.edu.vn/
Hình 3.14. Đặc tính điều chỉnh hệ bóng – tay đòn khi sử dụng bộ điều khiển mờ thích nghi vòng ngoài với giá trị đặt thay đổi
* Nhận xét:
Tiến hành chạy mô phỏng với các giá trị đặt cố định và thay đổi, kết quả mô phỏng đƣợc chỉ ra trên Đặc tính động của hệ thống khi sử dụng bộ điều khiển mờ thích nghi ở vòng ngoài với giá trị đặt không đổi và Đặc tính điều chỉnh hệ bóng - khi sử dụng bộ điều khiển mờ thích nghi vòng ngoài với giá trị đặt thay đổi ta thấy:
Khi không có nhiễu tác động vào hệ Bóng - Tay đòn thì đặc tính động của hệ thống khi sử dụng PID kinh điển và bộ điều khiển mờ thích nghi không khác nhau nhiều.
Khi có nhiễu tác động so với bộ điều khiển PID thì đáp ứng của hệ khi sử dụng bộ điều khiển thích nghi mờ khá ổn định, dao động ít hơn và bám sát hơn với giá trị đặt.
0 50 100 150 t(s) - 1 -0.5 0 0.5 Vị trí
Số hóa bởi Trung tâm Học liệu http://www.lrc-tnu.edu.vn/
3.4. Kết luận chƣơng 3
Nội dung toàn chƣơng 3 tác giả đã giải quyết các vấn đề sau:
Trình bày kết quả thiết kế, mô phỏng và thực nghiệm việc điều khiển hệ bóng tay đòn bằng bộ PID kinh điển.
Trình bày kết quả thiết kế, mô phỏng và thực nghiệm việc điều khiển hệ bóng tay đòn bằng bộ điều khiển mờ thích nghi theo mô hình mẫu song song.
Các kết quả thu đƣợc từ đặc tính động và đặc tính điều chỉnh cho thấy việc sử dụng điều khiển mờ thích nghi có thể nâng cao chất lƣợng điều khiển và khả năng kháng nhiễu cho hệ bóng – tay đòn. Đồng thời cũng khẳng định tính khả thi của bộ điều khiển đề xuất.
Số hóa bởi Trung tâm Học liệu http://www.lrc-tnu.edu.vn/
KẾT LUẬN CHUNG
Điều khiển thích nghi nói chung và thích nghi mờ nói riêng đã có nhiều áp dụng thành công trong lĩnh vực điều khiển. Với luận văn "Nghiên cứu ứng dụng điều khiển thích nghi cho Bóng - Tay đòn”, tác giả đã thực hiện đƣợc một số nội dung và thu đƣợc một số kết quả sau:
Tìm hiểu tổng quan về lý thuyết điều khiển tự động, đi sâu phân tích hệ điều khiển mờ, điều khiển thích nghi và điều khiển tích nghi mờ làm cơ sở cho việc tính toán, thiết kế bộ điều khiển cho đối tƣợng cụ thể.
Tìm hiểu hệ Bóng - Tay đòn tại phòng thí nghiệm Khoa Điện tử - --- `Trƣờng Đại học kỹ thuật công nghiệp; xây dựng mô hình toán cho hệ thống.
Tổng hợp bộ điều khiển PID kinh điển cho mạch vòng điều khiển góc nghiêng (mạch vòng trong) và mạch vòng điều khiển vị trí (mạch vòng ngoài) của hệ Bóng - Tay đòn.
Tổng hợp bộ điều khiển mờ thích nghi theo mô hình mẫu song song cho mạch vòng ngoài của hệ Bóng - Tay đòn.
Mô hình hóa và mô phỏng hệ thống trên phần mềm Matlab-Simulink so sánh các kết quả khi có nhiễu và không có nhiễu ứng với hai bộ điều khiển PID kinh điển và điều khiển mờ thích nghi.
Bƣớc đầu thực hiện thí nghiệm bộ điều khiển đề xuất trên hệ thống thực.
Kiến nghị: Tiếp tục nghiên cứu đề xuất các giải pháp mới nhằm nâng cao tính kháng nhiễu cho hệ Bóng - Tay đòn .
Số hóa bởi Trung tâm Học liệu http://www.lrc-tnu.edu.vn/
TÀI LIỆU THAM KHẢO
[1] Nguyễn Nhƣ Hiển, Lại Khắc Lãi (2006), Hệ mờ và mạng nơ ron
trong kỹ thuật điều khiển, NXB Khoa học tự nhiên và Công nghệ
[2] Bùi Công Cƣờng, Nguyễn Doãn Phƣớc (2006), Hệ mờ mạng nơ ron
và ứng dụng, NXB Khoa học và Kỹ thuật
[3] Phan Xuân Minh, Nguyễn Doãn Phƣớc (2006), Lý thuyết điều khiển mờ, NXB Khoa học và Kỹ thuật
[4] Nguyễn Trọng Thuần (2000), Điều khiển logic và ứng dụng, NXB
Khoa học và Kỹ thuật
[5] Nguyễn Doãn Phƣớc, Phan Xuân Minh, Hán Thành Trung (2003),
Lý thuyết điều khiển phi tuyến, NXB Khoa học và Kỹ thuật
[6] Nguyễn Phùng Quang (2004), Matlab và Simulink, NXB Khoa học
và Kỹ thuật
[7] C. Altrock and B. Krause, "Fuzzy Logic and Neurofuzzy Technologies in Embedded Automotive Applications", Proceedings of Fuzzy Logic '93, pp. A113-1 - A113-9.
[8] R. Lea, Y. Jani, and H. Berenji, "Fuzzy Logic Controller with Reinforcement Learning for Proximity Operations and Docking", Fifth IEEE International Symposium on Intelligent Control, 1990.
[9] W. Pedrycz, "Fuzzy Sets and Neurocomputations: Knowledge Representation and Processing in Intellingent Controllers", Fifth IEEE International Symposium on Intelligent Control, 1990, pp. 626 - 630.
[10] K. P. Archer and S. Wang, "Fuzzy Set Representation of Neural Network Classification Boundaries", IEEE Transactions on Systems, Man, and Cybernetics, (July/August, 1991), pp. 735-742.
Số hóa bởi Trung tâm Học liệu http://www.lrc-tnu.edu.vn/
[11] A. Blanco and M. Delgado, "A Direct Fuzzy Inference Procedure By Neural Networks", Fuzzy Sets and Systems, (September 1993), pp. 133- 141.
[12] J. M. Keller and D. J. Hunt, "Incorporating Fuzzy Membership Functions into the Perceptron Algorithm", IEEE Transactions on Pattern Analysis and Machine Intelligence, (November, 1985), pp. 693-699.
[13] W. Pedrycz, "Fuzzy Neural Networks and Neurocomputations",
Fuzzy Sets and Systems, Vol. 56, (May 1993), pp. 1-28.
[14] Berenji, Hamid R. and Khedkar, Pratap. "Learning and Tuning Fuzzy Logic Controllers Through Reinforcements" IEEE Transactions on Neural Networks Vol. 3. pp. 724 - 740, 1992.
[15] J. M. Keller, R. R. Yager, and H. Tahani, "Neural Network Implementation of Fuzzy Logic" Fuzzy Sets and Systems (Vol 45), pp. 1-12, 1992.
[16] J. M. Keller, H. Tahani, "Backpropagation Neural Networks for Fuzzy Logic" Information Sciences Vol 62, pp. 205-221, 1992.