Thuật toán:

Một phần của tài liệu Phương pháp nhận dạng vật thể dựa trên thuật toán kth-law ECP-SDF (Trang 31 - 32)

Trong quá trình xử lý và nhận dạng ảnh, ‘méo’ là nguyên nhân gây ra nhiều khó khăn. Trong việc phân tích các dạng ‘méo’, những thao tác thường được tiến hành là: chụp lại một số bưc ảnh trong điều kiện môi trường thực tế, lấy một mẫu ảnh làm ảnh tham chiếu dùng cho việc nhận dạng. Sau các thao tác này, những bức ảnh có chứa mẫu tham chiếu được chia làm 3 nhóm: nhóm thứ nhất gồm các bức ảnh chứa mẫu tham chiếu chuẩn, nhóm các bức ảnh chứa mẫu tham chiếu (nhưng không giống hệt và chưa được đưa và làm dữ liệu nhận dạng) và nhóm cuối cùng gồm các ảnh không hề chứa mẫu tham chiếu. Hình a,b,c thể hiện các mẫu vật đã được lưu, chưa được lưu và hoàn toàn sai khác với mẫu cần nhận dạng. Việc lọc phi tuyến trong xử lý ảnh được bắt đầu bằng việc gán mẫu tha chiếu vào trung tâm của một bức ảnh có nền đen hoàn toàn (các pixel của nền bức ảnh có giá trị 0). Hình . thể hiện một ví dụ về mẫu tham chiếu được dùng để lập nên các bộ lọc phi tuyến.

Mỗi bức ảnh có một kích cỡ khác nhau. Sau đó chúng được chuẩn hóa về hệ xám và được chèn các giá trị 0 để trở thành các ảnh có cùng kích thước. Các bức ảnh chuẩn hóa được tiếp tục biến đổi Fuorier và biến đổi phi tuyến bậc k. Các kết quả tương quan phi tuyến đạt được bằng việc biến đổi Fourier ngược của tích giứa phổ phi tuyến đã được biến đổi của tín hiệu đầu vào với mẫu tham chiếu. Lúc này các mẫu tham chiếu được xem như các dấu hiệu tham chiếu riêng biệt để tổng hợp một bộ lọc phi tuyến đơn. Một bộ lọc phi tuyến đơn đạt được

bằng cách biến đổi Fourier toán tử phi tuyến của phương trình (4.1.3) với các thông số lấy từ mẫu tham chiếu. Hình . dưới đây mô tả các bước tiến hành tổng hợp một bộ lọc phi tuyến tổng hợp. Bộ lọc phi tuyến tổng hợp này đạt được bằng cách áp dụng phương trình (4.1.8) với hệ số k tùy thuộc mức độ biến đổi theo tỉ lệ của vật. Trong chương trình, ta sử dụng k=0.1 bởi thực nghiệm đã chứng tỏ giá trị này của k cho kết quả tương quan theo độ nét, khả năng phân biệt và sự bất biến theo độ sáng là tốt nhất.

Một phần của tài liệu Phương pháp nhận dạng vật thể dựa trên thuật toán kth-law ECP-SDF (Trang 31 - 32)

Tải bản đầy đủ (DOC)

(38 trang)
w