Almost Periodic Lyapunov Functions

Một phần của tài liệu Gani t stamov almost periodic solutions of impulsive differential equations 2012 (Trang 120 - 129)

3.1 Lyapunov Method and Almost Periodic Solutions

3.1.1 Almost Periodic Lyapunov Functions

In the further considerations we shall use the following lemma.

Lemma 3.1 ([116]). Given any real function A(r, ε) of real variables, defined, continuous and positive in Q =

(r, ε) : r R+ and ε > 0 , there exist two continuous functions h = h(r), h(r) > 0 and g = g(ε), g(ε)>0, g(0) = 0 such thath(r)g(ε)≤A(r, ε)inQ.

Now, we shall prove a Massera’s type theorem.

Theorem 3.1. Let conditions H3.1–H3.8 hold, and suppose that the zero solution of system (3.1)is globally perfectly uniform-asymptotically stable.

Then there exists a Lyapunov function V, defined on R×Rn, V V0, which is almost periodic int uniformly with respect tox∈Rn, and satisfies the following conditions

a(||x||)≤V(t, x)≤b(||x||), (t, x)R×Rn, (3.3) wherea, b∈K,a(r), b(r)→ ∞asr→ ∞,

V(t+, x)≤V(t, x), x∈Rn, t=tk, k=±12, ...,

and

D+V(t, x)≤ −cV(t, x), (t, x)∈G (3.4) for c=const >0.

Proof. Fallow [15] letΓ(σ, α) =

(t, x) : t (−σ, σ), x Bα

, where σ and αare arbitrary positive constants. From [21] and by the global perfect uniform-asymptotic stability of the zero solution of (3.1), it follows that the solutions of system (3.1) are equi-bounded, i.e. there exists a constant β = β(α) > 0 such that for (t0, x0) Γ(σ, α), we have ||x(t;t0, x0)|| < β(α), wheret≥t0.

Moreover, there exists aT(α, ε)>0 such that from (t0, x0)∈Γ(σ, α), we obtain||x(t;t0, x0)||< εfort≥t0+T(α, ε). Ifε >1, we setT(α, ε) =T(α,1).

From conditions H3.2 and H3.4, it follows that there exist L1(α, ε) > 0 andL2(α, ε)>0 such that if 0≤t≤σ+T(α, ε), x1, x2∈Bβ(α), we get

||f(t, x1)−f(t, x2)|| ≤L1(α, ε)||x1−x2||,

||Ik(x1)−Ik(x2)|| ≤L2(α, ε)||x1−x2||, k=±12, ....

Let

f= 1 + max||f(t, x)||, 0≤t≤T(α, ε), x∈Bβ(α), I= max||Ik(x)||, x∈Bβ(α), k=±12, ..., and letc=const >0.

We set

A(α, ε) =ecT(α,ε)× 2

f+I1 p

+ 1

p+ 1

T(α, ε)

eL1(α,ε)+1pln(1+L2(α,ε))+β(α)

. (3.5) From Lemma 3.1, it follows that there exist two functions h(α)>0 and g(ε)>0 such thatε >0, g(0) = 0 and

g(ε)A(α, ε)≤h(α). (3.6)

Fori= 1,2, ..., let we defineVi(t, x) by Vi(t, x) =g

1 i

sup

τ0Yi x(t+τ, t, x)

e, t=tk, Vi(tk, x) =Vi(tk, x), k=±12, ...,

(3.7)

where

Yi(z) =

z−1i, if z≥ 1i, 0, if 0≤z≤1i.

3.1 Lyapunov Method and Almost Periodic Solutions 101

Clearly,Yi(z)→ ∞asz→ ∞, for eachi, and

||Yi(z1)−Yi(z2)|| ≤ |z1−z2|, (3.8) wherez1, z20.

From the definition ofVi(t, x) it follows that g

1 i

Yi(||x||)≤Vi(t, x), (3.9) andVi(t,0)0 as (t, x)∈Γ(σ, α).

On the other hand, from (3.5) and (3.6), we have

Vi(t, x)≤g 1

i

Yi(β(α))ecT(α,1i)≤g 1

i

β(α)ecT(α,1i)≤h(α). (3.10) Then from (3.9) and (3.10) for the functionVi(t, x) it follows that (3.3) holds. For (t, x),(t, x)∈Γ(σ, α) andt < t, we get

Vi(t, x)−Vi(t, x)≤g 1

i

sup

τ0

Yi(||x(t+τ;t, x)||)

−Yi(||x(t+τ;t, x)||)e

≤g 1

i

sup

0τT(α,1i)

ex(t+τ;t, x)−x(t+τ;t, x)

≤g 1

i

sup

τ0ex(t+τ;t, x)−x(t+τ;t, x) +x(t+τ;t, x)−x(t+τ;t, x). (3.11) Then

x(t+τ;t, x)−x(t+τ;t, x)

t+τ

t+τ

f(s, x(s))ds+

t+τ <tk<t+τ

Ik(x(τk))

max

t+τ≤s≤t+τ x∈(α)

f(s, x(s))(t−t) + max

t+τtkt+τIk(x(tk))i(t+τ, t+τ)

f+I1 p

(t−t), (3.12)

wherei(t+τ, t+τ) is the number of points on the interval (t+τ, t+τ).

LetX =x(t;t, x). From Theorem 1.9, we obtain x(t+τ;t, x)−x(t+τ;t, x)

≤ ||X−x||exp

L1 α,1 i

+1 pln

1 +L2 α,1 i

T α,1 i

||X−x||+||x−x||

exp

L1 α,1 i

+1 pln

1 +L2 α,1 i

T α,1 i

f+I1 p

(t−t) +||x−x||

×exp

L1 α,1 i

+1 pln

1 +L2 α,1 i

T α,1 i

. (3.13)

Then from (3.12), (3.13) for (3.11), it follows Vi(t, x)−Vi(t, x)≤g

1 i

sup

0τT(α,1i)

e f+I1 p

+ f+I1 p

(t−t)

+x−x

×exp

L1 α,1 i

+1 pln

1 +L2 α,1 i

T α,1 i

≤g 1

i

2

f+I1 p

exp

L1 α,1 i

+1 pln

1 +L2 α,1 i

T α,1 i

× |t−t|+||x−x||

≤h(α) |t−t|+||x−x||

. (3.14)

On the other hand, asx ∈Bβ(α) and t =tk, from (3.14) it follows that Vi(t, x) is continuous, and fort =t we obtain that the functionVi(t, x) is locally Lipschitz continuous.

Lettkare fixed,t, t(tk, tk+1],x, x∈Bβ(α)andu=x(t;tk, x), u= x(t;tk, x).

Then

Vi(t, x)−Vi(t, x)≤Vi(t, x)−Vi(t, u)

+Vi(t, x)−Vi(t, u)+Vi(t, u)−Vi(t, u). (3.15) By the fact that the functionsVi(t, x) andf(t, x) are Lipschitz continuous, we obtain the estimates

|Vi(t, x)−Vi(t, u)| ≤h(α)||x−u||,

||x−u|| ≤ ||x−x||+||u−x||,

||u−x|| ≤ t

tk

L1 α,1 i

exp

s tk

L1 α,1 i

ds||x|| ≡N(t)||x||.

3.1 Lyapunov Method and Almost Periodic Solutions 103

Then

Vi(t, x)−Vi(t, u)≤h(α)x−x+h(α)N(t)||x||. (3.16) By analogy,

Vi(t, x)−Vi(t, u)≤h(α)||x−x||+h(α)N(t)||x||. (3.17) Sinceai(δ) = sup

τ >δ

Yi(x(tk+τ, tk, x))eis non-increasing and lim

δ0+ai(δ) = ai(0), it follows that

Vi(t, u)−Vi(t, u)≤g 1

i sup

s>0Yi ||x(t+s;t, u)||

ecs

sup

s>0Yi x(t+s;t, u) ecs

≤g 1

i

a(t−tk)ec(ttk)−a(t−tk)ec(ttk)0

ast t+k andt→t+k. From (3.15)–(3.17), we obtain that there exists the limitVi(t+k, x).

The proof of the existence of the limitVi(tk, x) follows by analogy.

Letη(t;t0, x0) be the solution of the initial value problem η˙=f(t, η),

η(t0) =x0.

Sincetk1< λ < tk< μ < tk+1 ands > μit follows that x s;μ, η(μ;tk, x+Ik(x))

=x s;λ, η(λ, tk, x) . Then

Vi μ, η(μ;tk, x+Ik(x))

≤Vi λ, η(λ;tk, x) and passing to the limits asμ→t+k andλ→tk, we obtain

Vi t+k, x+Ik(x)

≤Vi(tk, x) =Vi(tk, x). (3.18) Letx∈Bβ(α),t=tk,h >0, andx=x(t+h;t, x).

Then

Vi(t+h, x) =g 1

i

sup

s0Yi x(t+h+s, t+h, x) ecs

=g 1

i

sup

τ >h

Yi x(t+τ, t+h, x)

eech≤Vi(t, x)ech

or 1

h Vi(t+h, x)−Vi(t, x)

1

h(ech1)Vi(t, x).

Consequently, D+Vi(t, x) ≤ −cVi(t, x). From this inequality, we obtain (3.4) for the functionVi(t, x).

Now, we define the desired functionV(t, x) by setting

⎧⎪

⎪⎩

V(t, x) = i=1

1

2iVi(t, x), t=tk, V(tk, x) =V(tk, x), k=±12, ....

(3.19)

Since (3.11) implies the uniform convergence of the series (3.19) in Γ(σ, α), V(t, x) is defined on R×Rn, piecewise continuous along t, with points of discontinuity at the momentstk, k=±12, ...and it is continuous alongx.

From (3.9) it follows thatV(t,0)0. Forxsuch that||x|| ≥1, from (3.9) and (3.19), we obtain

V(t, x)> 1

2V1(t, x)1

2g(1)Y1(x) 1

2(x −1). (3.20) Forxsuch that 1

i ≤ ||x|| ≤ 1

i−1, we obtain V(t, x) 1

2i+1Vi+1(t, x)

1 2i+1g

1 i+ 1

Yi+1(||x||)

1 2i+1g

1 i+ 1

Yi+1

x − 1 i+ 1

1 2i+1g

1 i+ 1

1

i(i+ 1). (3.21)

From (3.20) and (3.21) we can finda∈K such thata(r)→ ∞as r→ ∞ anda(||x||)≤V(t, x).

Let (t, x),(t, x)∈Γ(σ, α) witht < t, and then V(t, x)−V(t, x)

i=1

1

2iVi(t, x)−Vi(t, x)

i=1

1

2ih(α) |t−t|+x−x

≤h(α) |t−t|+x−x

. (3.22)

3.1 Lyapunov Method and Almost Periodic Solutions 105

From (3.22) it follows that forx∈Bβ(α) and t=tk the functionV(t, x) is continuous, and fort=t, we obtainV(t+, x+Ik(x))≤V(t, x).

Let tk R, x Bβ(α) be fixed and ξj (tk, tk+1], xj Bβ(α), where uj =x(ξj;tk, xj), (j= 1,2).

Then

V(ξj, xj)−V(ξj, uj)= i=1

1

2iVi(ξj, xj)−Vi(ξj, uj)

i=1

1 2ig

1 2i

a(ξ1−tk)ec(ξ1tk)−a(ξ2−tk)ec(ξ2tk)0

forξj →t+k (j = 1,2), i.e. there exists the limit V(t+k, x). The proof of the existence of the limitV(tk, x) follows by analogy.

Let nowtk1< λ < tk< μ < tk+1,s > μand from (3.18), we get V t+k, x+Ik(x)

=

i=1

1

2iVi t+k, x+Ik(x)

i=1

V(tk, x)

i=1

1

2iVi(tk, x) =V(tk, x). (3.23) Letx∈Bβ(α), t=tk andh >0. Then from (3.19), we obtain

D+V(t, x) =

i=1

lim

h0+sup1 h

Vi(t+h, x(t+h;t, x))−Vi(t, x)

and

i=1

1

2i −cVi(t, x)

≤ −cV(t, x).

Then

D+V(t, x)≤ −cV(t, x). (3.24) Consequently, from (3.24) it follows that there existsV(t, x) fromV0 such that (3.3) and (3.4) are fulfilled.

Here, we shall show that the function V(t, x) is almost periodic in t uniformly with respect tox∈Bβ(α).

From conditions of the theorem it follows that if x Bβ(α), then there exists β(α) > 0 such that ||x(t;τ, x)|| ≤ β(α) for any t τ, τ R. From conditions H3.6–H3.8, we get that for an arbitrary sequence {sm} of real numbers there exists a subsequence{sn}, sn=smn moving (3.1) in H(f, Ik, tk).

Then, asx∈Bβ(α), we obtain Vi(t+sn, x)−Vi(t+sp, x)≤g

1 i

sup

τ0eYi x(t+sn+τ;t+sn, x)

−Yi x(t+sp+τ;t+sp, x)

≤g 1

i

sup

0τT(α,1i)

ex t+sn+τ;t+sn, x

−x t+sp+τ;t+sn, x. (3.25) On the other hand,

x t+sn+τ;t+sn, x

=x+ t+τ

t

f σ+sn, x(σ+sn;t+sn, x)

+

t<σi(sn)<t+τ

Ii+i(sn) x σi(sn) +sn;t+sn, x

(3.26)

and

x t+sp+τ;t+sp, x

=x+ t+τ

t

f σ+sp, x(σ+sp;t+sp, x)

+

t<σi(sp)<t+τ

Ii+i(sp) x σi(sp) +sp;t+sp, x

, (3.27)

where σi(sj) =tk−sj, j =n, p, and the numbers i(sn) and i(sp) are such thati+i(sj) =k.

From (3.26) and (3.27), it follows

x(t+sn+τ;t+sn, x)−x(t+sp+τ, t+sp, x)

t+τ

t

f σ+sn, x(σ+sn;t+sn, x)

−f σ+sp, x(σ+sn;t+sn, x) +

t+τ t

f σ+sp, x(σ+sn;t+sn, x)

3.1 Lyapunov Method and Almost Periodic Solutions 107

−f σ+sp, x(σ+sp;t+sp, x)

+

t<σi(sn)<t+τ

Ii+i(sn) x(σi(sn) +sn;t+sn, x)

−Ii+i(sp) x(σi(sn) +sn;t+sn, x)

+

t<σi(sp)<t+τ

Ii+i(sp) x(σi(sp) +sn;t+sn, x)

−Ii+i(sp) x(σi(sp) +sp;t+sp, x).

Now, fromx(σ+sn;t+sn, x)∈Bβ(α) it follows that for anyε >0 there exists a numberN(ε)>0 such that asn, p≥N(ε), we obtain

f σ+sn, x(σ+sn;t+sn, x)

−f σ+sp, x(σ+sn;t+sn, x)< ε, (3.28) Ii+i(sn) x(σi(sn) +sn;t+sn, x)

−Ii+i(sp) x(σi(sn) +sn;t+sn, x)< ε. (3.29) Then from (3.28), (3.29) and conditions H3.2 and H3.4, we obtain

x(t+sn+τ;t+sn, x)−x(t+sp+τ, t+sp, x)

≤ετ

1 + 1 p

+ t+τ

t

L1(α,1

i)x(σ+sn;t+sn, x)

−x(σ+sp, t+sp, x)

+

t<σi<t+τ

L2(α,1

i)x(σi(sn) +sn;t+sn, x)

−x(σi(sp) +sp;t+sp, x). (3.30) On the other hand, from Theorem 1.9 and (3.30), we obtain

x(t+sn+τ;t+sn, x)−x(t+sp+τ, t+sp, x)

≤ετ

1 + 1 p

exp

(L1(α,1 i) +1

pln(1 +L2(α,1 i))τ

. (3.31)

From (3.31) and (3.25) it follows Vi(t+sn, x)−Vi(t+sp, x)

≤g 1

i

1 +1 p

T

α,1 i

exp

(c+L1(α,1 i) +1

pln(1 +L2(α,1

i))T(α,1 i))

ε

≤h(α)ε. (3.32)

From (3.32) we get thatVi(t+sn, x) is uniformly convergent with respect to t Rand x∈ Bβ(α). Then, Vi(t, x) is almost periodic ont uniformly with respect tox∈Bβ(α).

Inequality (3.19) implies that for n, p∈N(ε) andx∈Bβ(α) we obtain V(t+sn, x)−V(t+sp, x)≤h(α)ε,

i.e.V(t, x) is almost periodic intuniformly with respect tox∈Bβ(α).

Một phần của tài liệu Gani t stamov almost periodic solutions of impulsive differential equations 2012 (Trang 120 - 129)

Tải bản đầy đủ (PDF)

(235 trang)