[1] PGS. TS. Đặng Dinh Bạch and TS. Nguyễn Văn Hai, Giáo Trinh Hóa Học Môi
Trường. Khoa học - Kỹ thuật, 2006.
[2] “Thông tư số 06/2013/TT-BTNMT ngày 07/05/2013 của Bộ Tài nguyên và Môi trường ban hành Danh mục lĩnh vực, ngành sản xuất, chế biến có nước thải chứa
kim loại nặng phục vụ tính phí bảo vệ môi trường đối với nước thai.” Bộ Tài
Nguyên và Môi Trường, 2013. Accessed: Sep. 27, 2023. [Online]. Available:
https://thuvienphapluat.vn/van-ban/Thue-Phi-Le-Phi/Thong-tu-06-2013-TT- BTNMT-Danh-muc-linh-yuc-nganh-san-xuat-che-bien-195507.aspx
[3] Ð. X. Thu, Ð. T. Điệp, and T. T. K. Linh, “Xác định ham lượng Cu, Pb, Cd, Mn
trong nước thải và nước sinh hoạt khu Vực Thạch Sơn - Lâm Thao - Phú Thọ bằng
phương pháp quang phô hap thụ nguyên tử,” Tạp Chí Khoa Học Đại Hoc Sw Phạm Thành Phố Hồ Chí Minh, pp. 43-52, 2016.
[4] R. Nicholas and F. Richard, “The toxic truth: Children’s exposure to lead pollution undermines a generation of future potential,” UNICEF and Pure Earth, 2020.
[5] A. L. Wani, A. Ara, and J. A. Usmani, “Lead toxicity: a review,” Interdiscip.
Toxicol., vol. 8, no. 2, pp. 55-64, 2015, doi: 10.1515/intox-2015-0009,
[6] D. J. K. Anant, D. §. R. Inchulkar, and D. S. Bhagat, “An overview of Copper toxicity relevance to public health,” Eur J. Pharm. Med. Res., vol. 5, no. 11, pp.
232-237, 2018.
[7] W. Li et al, “Mechanisms and reutilization of modified biochar used for removal
of heavy metals from wastewater: A review,” Sei. Total Environ., vol. 668, pp.
1298-1309, 2019, doi: 10,1016/j.scitotenv,2019,03.011.
[8] M. Ganesapillai ef al, “Waste to energy: A review of biochar production with
emphasis on mathematical modelling and its applications,” Helivon, vol. 9, no. 4, p. e14873, 2023, doi: 10.1016/j-heliyon.2023.¢14873.
[9] W.-J. Liu, F.-X. Zeng, H. Jiang, and X.-S. Zhang, “Preparation of high adsorption capacity bio-chars from waste biomass,” Bioresour. TechnoL, vol. 102, no. 17, pp.
8247-8252, Sep. 2011, doi: 10.1016/j.biortech.2011.06.014.
[10] W. Hongyu, G. Bin, W. Shenseng, F. June, X. Yingwen, and Y. Kai, “Removal of Pb(IH). Cu(11). and Cđ(H) from aqueous solutions by biochar derived from KMnOa treated hickory wood,” Bioresour. Technol., vol. 197, pp. 356-362, 2015, doi:
10.1016/1.biortech.201S.08. 132.
[II] G. Liang et aí., “Quantitative contribution of minerals and organics in biochar to Pb(II) adsorption: Considering the increase of oxygen-containing functional groups,” J. Clean. Prod., vol. 325, p. 129328 2021, doi:
10.1016/j.jclepro.202 1.129328.
[12] 1. F. Collins and L. M. Klevay, “Copper,” Adv. Nutr, Bethesda Md, vol. 2, no. 6, pp.
520-522, Nov. 2011, doi: 10.3945/an.111.001222.
[13] Hoàng Nhâm, Héa Hoc V6 Cơ - Tập 3. Nhà xuất bản Giáo dục, 2005.
[14] S. Zunaira et al., “Copper uptake, essentiality, toxicity, detoxification and risk assessment in soil-plant environment,” Chemosphere, vol, 259, p. 127436, 2020, doi: 10.1016/j.chemosphere.2020, 127436.
[I5]N. Karim, “Copper and Human Health- A Review,” J. Bahria Univ. Med. Dent.
Coll, vol. 08, no. 02, pp. 117-122, 2018, doi: 10.51985/JBUMDC2018046.
[16] J. Briffa, E. Sinagra, and R. Blundell, “Heavy metal pollution in the environment and their toxicological effects on humans,” Heliyon, vol. 6, no. 9 , 2020, doi:
10.1016/j-heliyon.2020.c04691.
[17] G. A. Engwa er al, “Mechanism and health effects of heavy metal toxicity in humans,” Poisoning in the Modern World - New Tricks for an Old Dog?, 2019. doi:
10.5772/intechopen.825 11.
[I8] A. Medynska-Juraszek and C. Kabata, “Heavy metal pollution of forest soils affected by the copper industry,” /. Elemntology, no. 2012, Jul. 2012, doi:
10.5601 /jelem.2012.17.3.07.
[19] R. Muzammal et al., “Copper environmental toxicology, recent advances, and future outlook: a review,” Environ. Sci. Pollut. Res., vol. 26, no. 18, pp. 18003—
18016, 2019, doi: 10,1007/s11356-019-05073-6.
[20] A. Royer and T. Sharman, “Copper Toxicity,” StatPearls, Treasure Island (FL):
StatPearls Publishing, 2024. Accessed: Apr. 18, 2024. [Online]. Available:
http://www.ncbi.nlm.nih.gov/books/NBK557456/
[21] G. C. Sturniolo, C. Mestriner, P. Irato, V. Albergoni, G. Longo, and R. D’Inca, “Zine therapy increases duodenal concentrations of metallothionein and iron in Wilson’s disease patients,” Am. J. Gastroenterol., vol. 94, no. 2, pp. 334-338, 1999, doi:
10.1111/4.1572-0241.1999.851_w.x. ;
[22] P. T. Dương and H. T. K. Trâm, “Nghién cứu va đánh giá hàm lượng một sô kim
loại nặng trong tram tích đáy vùng cửa sông Mê Kông," Tạp Chí Khoa Hoe, vol.
75. no. 9, 2015.
[23] Van Ð. T. C. and Hà C. T. T., *Đánh giá khả năng 6 nhiễm kim loại nặng (Pb, Cu)
trong nước ri từ bùn thải nạo vét tại sông Kim Ngưu, Hà Nội, Tạp Chi Khoa Học Công Nghệ. 2018.
[24] E. Wojciechowska, N. Nawrot, J. Walkusz-Miotk, K. Matej-Lukowicz, and K.
Pazdro, “Heavy Metals in Sediments of Urban Streams: Contamination and Health Risk Assessment of Influencing Factors,” Sustainability, vol. 11, no. 3, 2019, doi:
10.3390/sul 1030563.
[25] S. Giri and A. K. Singh, “Assessment of metal pollution in groundwater using a novel multivariate metal pollution index in the mining areas of the Singhbhum copper belt,” Environ. Earth Sci., vol. 78, no. 6, 2019, doi: 10.1007/s12665-019-
8200-9,
[26] J. Liu, J. Wu, W. Feng, and X. Li, “Ecological Risk Assessment of Heavy Metals in Water Bodies around Typical Copper Mines in China,” Jnt. J. Environ. Res.
Public. Health, vol, 17, no. 12, 2020, doi: 10,3390/ijerph1 71243 15.
[27] L. H. Thia and N. V. Phương, **Đánh giá 6 nhiễm kim loại nặng trong tram tích ha
lưu sông Vàm Thuật,” J. Sei. 7echnol - !UH, vol. 59, no. 05, 2022, doi:
10.46242/jstiuh.v59i05.4601.
[28] Hoàng Nhâm, Héa Hoe Vô Cơ -Tap 2. Nhà xuất bản Giáo dục, 2006.
[29] T. T. M. Phương, Độc học môi trường. Đại học Quốc gia TP. Hồ Chí Minh, 2017.
Accessed: Apr. 12, 2024. [Online]. Available:
§3
https://ir.vnulib.edu.vn/flowpaper/simple_document.php?subfolder=2 1/62/90/&do c= 2162909 176885257493 1756790994978905285&bitsid=9d3 1b330-aac0-44e6-
ad14-laa774efa8Sc&uid=
[30] R. S. Dongre, “Lead: Toxicological Profile, Pollution Aspects and Remedial Solutions,” in Lead Chemistry, 2020. doi: 10.5772/intechopen.93095.
[31] B. Mary Jean and M. Stephen, “Lead in drinking water and human blood lead levels in the United States,” MMWR Suppi., vol. 61, no. 4, pp. 1-9, 2012.
[32] R. A. Bernhoft, “Mercury toxicity and treatment: a review of the literature,” J.
Environ. Public Health, vol. 2012, p. 460508, 2012, doi: 10.1155/2012/460508.
[33] H. G. Abadin, B. F. Hibbs, and H. R. Pohl, “Breast-feeding exposure of infants to cadmium, lead, and mercury: a public health viewpoint,” Toxicol. Ind. Health, vol.
13, no. 4, pp. 495-517, 1997, doi: 10.1177/074823379701300403.
[34] N. Pant, G. Kumar, A. D. Upadhyay, D. K. Patel, Y. K. Gupta, and P. K. Chaturvedi,
“Reproductive toxicity of lead, cadmium, and phthalate exposure in men,” Environ.
Sci. Pollut. Res. Int., vol. 21, no. 18, pp. 11066-11074, 2014, doi: 10.1007/311356-
014-2986-S,
[35] D. A. Gidlow, “Lead toxicity,” Oceup. Med., vol. 65, no. 5, pp. 348-356, 2015, doi:
10.1093/ocemed/kqv018,
[36] S. Telisman, P. Cvitkovié, J. lurasovié, A. Pizent, M. Gavella, and B. Rocié,
“Semen quality and reproductive endocrine function in relation to biomarkers of lead, cadmium, zinc, and copper in men,” Environ. Health Perspect., vol. 108, no.
1, pp. 45-53, 2000, doi: 10.1289/ehp.0010845.
[37] P. Apostoli, P. Kiss, S. Porru, J. P. Bonde, and M. Vanhoorne, “Male reproductive toxicity of lead in animals and humans,” Occup. Environ. Med., vol. 55, no. 6, pp.
364-374, 1998.
[38] S. Telišman, B. Colak, A. Pizent, J. Jurasovié, and P. Cvitkovié, “Reproductive
toxicity of low-level lead exposure in men,” Environ. Res., vol. 105, no. 2, pp. 256—
266, 2007, doi: 10.1016/j.envres.2007.05.011.
[39] O. A. Aghoghovwia, O. Oyelese, and E. Ohimain, “Heavy metal levels in water and sediment of Warri River, Niger Delta, Nigeria,” /nternational Journal of Geology, Agriculture and Environmental Sciences, vol. 3, no. 1, 2015.
[40] R. N. Malik and M. Z. Hashmi, “Multivariate statistical techniques for the evaluation of surface water quality of the Himalayan foothills streams, Pakistan,”
Appl. Water Sci., vol. 7, no. 6, pp. 2817-2830, 2017, doi: 10.1007/s13201-017-
0532-6.
[41] T. T. M. Thu, T. A. Tuan, and T. Mi, Minh, “Đánh giá thực trạng ô nhiễm kim loại nặng trong đất nông nghiệp tinh Bắc Ninh,” Tap Chi Khoa Học Công Nghệ Nông
Nghiệp Viet Nam, vol. 8, no. 93, pp. 102-108, 2018,
[42] S. S. Mahipal, R. Kumar, and L. Prasad, “Seasonal Variations of Lead and Chromium Concentrations in the Water Samples From Yamuna River in Delhi, India,” an. J. Toxicol, vol. 15, no. 2, pp. 109-114, 2021, doi:
10.32598/1JT.15.2.769.1.
[43] P. T. M. Hương, ` 'Đánh giá mức độ ô nhiễm kim loại chi (Pb) trong rau xanh được
trồng tại một số địa phương thuộc đồng bằng sông Hong bằng phương pháp quang
84
pho hap thụ nguyên tr,” Tap Chi KHOA HOC VA CONG NGHE, vol. 54, no. 6,
2021.
[44] V. Javanbakht, S. A. Alavi, and H. Zilouei, “Mechanisms of heavy metal removal using microorganisms as biosorbent,” Water Sci. Technoi., vol. 69, no. 9, pp. 1775
1787, 2013, doi: 10.2166/wst.2013.718.
[45] A. Ali Redha, “Removal of heavy metals from aqueous media by biosorption,”
Arab J. Basic Appl. Sci., vol. 27, no. 1, pp. 183-193, 2020, doi:
10.1080/25765299.2020.1756177.
[46] L. Anastopoulos and G. Z. Kyzas, “Progress in batch biosorption of heavy metals onto algae” J. Mol. Lig., vol. 209, pp. 77-86, 2015, doi:
10.1016/j.mollig.2015.05.023.
[47] H. Jinsong and C. J. Paul, “A comprehensive review on biosorption of heavy metals by algal biomass: Materials, performances, chemistry, and modeling simulation
tools,” Bioresour. Technoi, vol. 160, pp. 67-78, 2014, — doi:
10.1016/1.biortech.2014.01.068.
[48] 1. R. M. Benila Smily and P. A. Sumithra, “Optimization of Chromium Biosorption by Fungal Adsorbent,” HAYATI J. Biosci., vol. 24, no. 2, pp. 65-71, 2017, doi:
10.1016/1.hib.2017.08.005.
[49] F. Noli, E. Kapashi, and M. Kapnisti, “Biosorption of uranium and cadmium using sorbents based on Aloe vera wastes,” J. Environ. Chem. Eng., vol. 7, no. 2, 2019, doi: 10.1016/j.jece.2019.102985.
[S0] A. Bashir et a/., “Removal of heavy metal ions from aqueous system by ion- exchange and biosorption methods,” Environ. Chem. Lett., vol. 17, no. 2, pp. 729—
754, 2019, doi: 10.1007/s10311-018-00828-y.
[51] G. Al-Enezi, M. F. Hamoda, and N. Fawzi, "lon Exchange Extraction of Heavy Metals from Wastewater Sludges,” J. Environ. Sci. Health Part A, vol. 39, no. 2, pp. 455-464, 2004, doi: 10.1081/ESE-120027536.
[52] T. M. Zewail and N. S. Yousef, “Kinetic study of heavy metal ions removal by ion exchange in batch conical air spouted bed,” Alex. Eng. J., vol. 54, no. 1, pp. 83-90,
2015, doi: 10.1016/j.ae].2014.11.008.
[53] T. Thien Khanh, C. Kuo Feng, L. Chiu Yue, and L. HoangJyh, “Electrochemical treatment of wastewater: Selectivity of the heavy metals removal process,” Jnt. J.
Hydrog. Energy, vol. 42, no. 45, pp. 27741-27748, 2017, doi:
10.1016/).ijhydene.2017.05,156.
[S4] A. Azimi, A. Azari, M. Rezakazemi, and M. Ansarpour, “Removal of Heavy Metals from Industrial Wastewaters: A Review,” ChemBioEng Rev., vol. 4, no. 1, pp. 37—
59, 2017, doi: 10.1002/cben.201600010.
[S5] A. Lewis, “Precipitation of Heavy Metals,” Sustainable Heavy Metal Remediation:
Volume 1: Principles and Processes, 2017, pp. 101-120. doi: 10,1007/978-3-319-
$8622-9_ 4.
[56] N. A. A. Qasem, R. H. Mohammed, and D. U. Lawal, “Removal of heavy metal ions from wastewater: a comprehensive and critical review,” Npj Clean Water, vol.
4, no. 1, pp. 1-15, 2021, doi: 10.1038/s41545-021-00127-0.
85
[Š7] Z. Muhammad Zaim Anaqi, S. Mohd Sani, and R. Md Lutfor, “Heavy Metals Removal from Water by Efficient Adsorbents,” Warer, vol. 13, no. 19, Art. no. 19, 2021, doi: 10.3390/w13192659.
[58] G. Xiangpeng, G. Cheng, H. Junjie, Z. Zhuo, L. Hongming, and L. Mingyang,
“Adsorption of heavy metal ions by sodium alginate based adsorbent-a review and new perspectives,” Jnr. J. Biol. Macromol., vol. 164, pp. 4423-4434, 2020, doi:
10.1016//.ijbiomac.2020.09.046.
[59] H. I. Owamah, “Biosorptive removal of Pb(II) and Cu(II) from wastewater using activated carbon from cassava peels,” J. Mater. Cycles Waste Manag., vol. 16, no.
2, pp. 347-358, 2014, doi: 10.1007/s10163-013-0192-z.
[60] A. Tripathi and M. Rawat Ranjan, “Heavy Mctal Removal from Wastewater Using Low Cost Adsorbents,” /. Bioremediation Biodegrad., vol. 06, no. 06, 2015, doi:
10.4172/2155-6199.1000315,
[61] M. Hongcheng, Y. Longsheng, W. Qian, X. Jin, and Z. Binghang, “Preparation and optimization of a low-cost adsorbent for heavy metal ions from red mud using fraction factorial design and Box-Behnken response methodology,” Colloids Surf:
Physicochem. Eng. Asp., volL 627 p. 127198, = 2021, - doi:
10.1016/j.colsurfa.2021.127198.
[62] S. Simranjeet, K. Dhriti, K. Sutripto, S. Joginder, and R. Praveen C., “Mechanism
and kinetics of adsorption and removal of heavy metals from wastewater using nanomaterials,” Environ. Chem. Led, vol. 19, no. 3, pp. 2351-2381, 2021, doi:
10.1007/s103 11-021-01196-w.
[63] H. Athar, M. Sangeeta, M. Richa, H. Athar, M. Sangeeta, and M. Richa, “Removal of Heavy Metals from Wastewater by Adsorption,” Heavy Metals - Their Environmental Impacts and Mitigation, 2021. doi: 10.5772/intechopen.95841.
[64] J. Lehmann and S. Joseph, Eds., Biochar for Environmental Management, 2nd ed.
London: Routledge, 2015. doi: 10.4324/9780203762264.
[65] W. Yizhuo, L. He, and L. Shaohua, “Advances in the Study of Heavy Metal Adsorption from Water and Soil by Modified Biochar,” Water, vol. 14, no. 23, Art.
no. 23, 2022, doi: 10.3390/w14233894.
[66] W. Jianlong and W. Shizong. “Preparation, modification and environmental application of biochar: A review,” J. Clean. Prod., vol. 227, pp. 1002-1022, 2019,
doi: L0.1016/1.jclepro.2019.04.282.
[67] G. Tan, Y. Wu, Y. Liu, and D. Xiao, “Removal of Pb(ID ions from aqueous solution by manganese oxide coated rice straw biochar A low-cost and highly effective sorbent,” J. Taiwan Inst. Chem. ng, vol. 84, pp. 85-92, 2018, doi:
10.1016/1.i0ce.2017.12.031.
[68] X. Xiaoyun, C. Xinde, and Z. Ling, “Comparison of rice husk- and dairy manure- derived biochars for simultaneously removing heavy metals from aqueous solutions: Role of mineral components in biochars,” Chemosphere, vol, 92, no, 8, pp. 955-961, 2013, doi: 10.1016/j.chemosphere.2013.03.009.
[69] Z. Eric F., Z. Yong-Guan, R. Brian J., and S$. Gou-Xin, “The role of biochar properties in influencing the sorption and desorption of Pb(H), Cd() and As(I)
86
in aqueous solution,” J. Clean. Prod., vol. 148, pp. 127-136, 2017, doi:
10.1016/j.jclepro.2017.01.125.
[70] I. L. Balasooriya, J. Chen, S. M. Korale Gedara, Y. Han, and M. N. Wickramaratne,
“Applications of Nano Hydroxyapatite as Adsorbents: A Revie ,” Nanomaterials, vol. 12, no. 14, Art. no. 14, 2022, doi: 10.3390/nano12 142324.
[71] T. G. Ambaye, M. Vaccari, E. D. van Hullebusch, A. Amrane, and S. Rtimi,
“Mechanisms and adsorption capacities of biochar for the removal of organic and inorganic pollutants from industrial wastewater,” Jnt. J. Environ. Sci. Technol., vol.
18, no. 10, pp. 3273-3294, 2021, doi: 10.1007/s13762-020-03060-w.
[72] X. Wang, Z. Guo, Z. Hu, and J. Zhang, “Recent advances in biochar application for water and wastewater treatment: a review.” PeerJ, vol. 8, 2020, doi:
10.771 7/peerj.9164.
[73] L. Qian et al., “Effective removal of heavy metal by biochar colloids under different pyrolysis temperatures,” Bioresour. Technol., vol. 206, pp. 217-224, 2016, doi:
10.1016/1.biortech.2016.01.065.
[74] X. Tan et al., “Application of biochar for the removal of pollutants from aqueous solutions,” = Chemosphere, — vol. 125, pp. 70-85, 2015, - doi:
10.1016/j.chemosphere.2014.12.058,
[75] W. Fei, M. S. Kai, and Y. L. Xiao, “The partition behavior of
perfluorooctanesulfonate (PFOS) and perfluorooctanesulfonamide (FOSA) on
microplastics,” Chemosphere, vol. 119, pp. 841-847, 2015, doi:
10.1016/j.chemosphere.2014.08.047.
[76] P. H. Giang and D. Q. Huy, "Nghiên cứu xử lý kim loại nặng trong nước bằng
phương pháp hap phụ trên phụ phâm nông nghiệp biến tính axit photphoric,” J2VƯ J. Sei. Earth Environ. Sci., vol. 32, 2016.
[77] Ð. M. Trung and N. T. T. Trâm, “Nghién cứu than biến tinh từ vỏ hạt Mắc-ca sử
dung tác nhân H2O2 ứng dung xử ly chi trong nước thai gia định,” Tạp Chi Phat
Triển Khoa Học Và Công Nghệ - Khoa Học Trái Dat Va Môi Trường. vol. 4, pp.
231-239, 2021, doi: 10.32508/stdjsee.v4i2.540.
[78] P. T. N. Tram, “Nghiên cứu vật liệu than hoạt tinh từ vỏ hat Mắc-ca (macadamia
intergriforlia) được biến tinh bang tác nhân oxi hóa HNO; dé xử lý chi (Pb) trong
nước,” Luận văn thạc sĩ khoa học, chuyên ngành Khoa học môi trường, Dai học
Thủ Dau Một, Bình Duong, 2021.
[79] V. H. Tập, N. V. Đăng, and P. H. Linh, *Nghiên cứu chế ché tạo vật liệu than hoạt
tính bã mía gắn kết nano Fe;O4 và FesOs@ZnO va ứng dụng xử lý một số kim loại
nặng (Pb, As, Cr, Cd) trong môi trường nước,” TNU J. Sei. Technol., vol. 227, no.
08, pp. 258-268, 2022, doi: 10.34238/tnu-jst.5677,
[80] L. Yan, G. Liangmin, L. Zhongxiang, W. Yuchen, W. Yan, and W. Shunli,
“Enhanced Removal of Heavy Metals from Water by Hydrous Ferric Oxide- Modified Biochar,” ACS Omega, vol. 5, no. 44, pp. 28702-28711, 2020, doi:
10.102 1/acsomega.0c03§93.
[81] C. Tong, D. Huihui, L. Xiaoli, T. Baiqing, and Z. Zhaoxia, “Insights into the removal of Cd and Pb from aqueous solutions by NaOH-EtOH-modified biochar,”
Environ. Technol. Innov., vol. 24, p. 102031, 2021, doi: 10.1016/1.eti.2021.102031.
§7
[32] Z. Fengxiao, S. Rui, G. Jing, Z. Yuyuan, Y. Haoran, and C. Yong, “Magnetically Recyclable Loofah Biochar by KMnOg Modification for Adsorption of Cu(IL) from Aqueous Solutions,” ACS Omega, vol. 7, no. 10, pp. 8844-8853, 2022, doi:
10.102 1/acsomega. 1c07163.
[83] A. Wagas er đi., "Nano-hydroxyapatite modified biochar: Insights into the dynamic adsorption and performance of lead (II) removal from aqueous solution,” Environ.
Res., vol. 214, p. 113827, 2022, doi: 10.1016/j.envres.2022.113827.
[84] S. Chen ef aỉ.. “Study on adsorption of Cu?', Pb', Cd?*, and Zn** by the KMnO¿
modified biochar derived from walnut shell,” Jat. J. Environ. Sci. Technol., vol. 20, no. 2, pp. 1551-1568, 2023, doi: 10.1007/s13762-022-04002-4.
[S5] C. Zhiliang, X. Guoren, O. Banu, and H. Jiayin, “A novel magnetic sludge biochar was prepared by making full use of internal iron in sludge combining KMnO,—
NaOH modification to enhance the adsorption of Pb(H), Cu(II) and Cd(H),”
Environ. Res., vol. 236, 2023, doi: 10.1016/1.cnvres.2023.116470.
[86] L. V. T. Hùng, Kỹ thuật phân tích vật liệu. Tp. Hỗ Chí Minh: Trường đại học KHTN:
Đại học Quốc gia Tp Hồ Chí Minh, 2013.
[87] N. N. Định, Các phương pháp phản tích vật liệu. Hà Nội: Đại học Quốc gia Hà
Nội, 2017,
[88] D. Aastha, “Chaper 4 - Fourier Transform Infrared Spectroscopy,” in Spectroscopic
Methods for Nanomaterials Characterization, T. Sabu, T. Raju, Z. Ajesh K., and R.
K. Mishra, Eds., in Micro and Nano Technologies. , Elsevier, 2017, pp. 73-93. doi:
10.1016/B978-0-323-46140-5.00004-2.
[89] S. Seishi and M. Nobuyuki, “Surface Area Estimation: Replacing the Brunauer- Emmett-Teller Model with the Statistical Thermodynamic Fluctuation Theory |
Langmuir,” Am, Chem. Soc., 2022, doi:
https://doi.org/ 10.102 1/acs.langmuir.2c00753.
[90] B. Elisee Nsimba, R. Dominique, N. Carmen Mihaela, and Z. Gerald J.,
“Determination of point of zero charge of natural organic materials,” Environ. Sci.
Pollut. Res., vol. 25, no. 8, pp. 7823-7833, 2018, doi: 10.1007/s11356-017-1115- 7.
[91] P. T. C. Lượng, L. G. Huy, T. C. Hiền, and N. K. D. Mai, ‘ "Nghiên cứu kha nang xử lí ion Pb(H) và Cu(ID) trong dung dịch bằng than sinh học điều chế từ man cua,
Tap Chi Khoa Hoc, vol. 18, no. 12, p. 2162, 2021, doi:
10.54607/hemue.js. 18.12.3218(2021).
[92] S. Zhengguo, L. Fei, Y. Zhihong, Z. Lingyan, X. Baoshan, and Q. Weiwen,
“Synthesis and characterization of a novel MnO,-loaded biochar and its adsorption
properties for Cu** in aqueous solution,” Chem. Eng. J., vol. 242, pp. 36-42, 2014,
doi: 10.1016/1.cej.2013.12.06]1.
[93] P. Luận, Phương pháp phân tích phổ nguyên tử - Quyền 2. Bách khoa Hà Nội, 2023.
[94] T. Guangqun, L. Yong, and X. Dan, “Preparation of manganese oxides coated
porous carbon and its application for lead ion removal,” Carbohydr. Polym., vol.
219, pp. 306-315, 2019, doi: 10.1016/j.carbpol.2019.04.058.
[95] L. Wei, Z. Xiong, S. Jingai, Y. Haiping, Z. Shihong, and C. Hanping, “Simultaneous removal of cadmium and lead by biochar modified with layered double hydroxide,”