Vật liệu CFO đơn pha va composite CFOZ với ti lệ khác nhau đã được tông hợp thành công bang phương pháp sol-gel kết hợp phương pháp nung. Sự kết hợp giữa CFO và ZnO đã cho thấy hiệu suất phân hủy MB vượt trội so với CFO đơn pha.
99, 41% MB (20 mg-L'!) bị phân hủy chỉ sau 12 phút với [CFOZ-10%] = 0,75 g:L”,
[PMS] = 0.25 g-L và pH tự nhiên của dung dịch MB. Tốc độ phản ứng đạt 0,43419 phút” cao gap 7,3 lần so với CFO đơn pha trong cùng điều kiện phản ứng. Hệ xúc tác
CFOZ-10%⁄4/PMS có khả năng phân hủy MB trong khoảng pH rộng (3-10) do PMS
thích nghỉ tốt trong khoảng pH rộng va sự tương tác tốt giữa các thành phan trong hệ xúc tác. Sự ảnh hưởng của các anion vô cơ và nên mẫu khác nhau cũng được khảo sát, kết quả cho thay các anion không ảnh hưởng nhiều (ngoại trừ HCOZ và CO3”), nên mẫu là nước máy vả nước sông cũng cho hiệu suất loại bỏ MB tốt. Thông qua thí nghiệm bắt gốc tự do, các gốc SOF và -OH đều tham gia vào quá trình phân hủy MB, trong đó SOZ” giữ vai trò chủ đạo. Công trình này đã cung cấp những ý tưởng mới về việc xây dựng hệ xúc tác dự trên vật liệu spinel hoạt hóa PMS ứng dụng để xử lý chất
hữu cơ trong môi trường nước.
4.2 Kiến nghị
Do giới hạn vẻ điều kiện và thời gian nên trong nghiên cứu này vẫn còn những van dé chưa được lam rõ. Với điều kiện thích hợp. tôi xin dé xuất một số nội dung
cho các nghiên cứu sau này như sau:
-_ Tiếp tục nghiên cứu và mở rộng các phương pháp tỏng hợp vật liệu dé tạo ra vật liệu ôn định và đồng đều hơn.
- _ Các nghiên cứu sâu hơn về tinh chat, cau trúc, hình thái của vật liệu.
- _ Đánh giá độ bền và khả nang thu hồi của vật liệu.
- Đánh giá hoạt tính xúc tác của hệ trong nhiều loại nước thải chứa các chat
hữu cơ khác nhau.
45
[1]
[2]
[3]
[4l
[5]
[6]
[7]
[8]
[9]
[10]
TÀI LIỆU THAM KHẢO
K. K. Kefeni, B. B. Mamba, and T. A. M. Msagati, “Application of spinel ferrite nanoparticles in water and wastewater treatment: A review,” Separation and Purification Technology, vol. 188. Elsevier B.V., pp. 399-422, 2017.
Y. Zhu, R. Zhu, Y. Xi. J. Zhu, G. Zhu, and H. He, “Strategies for enhancing the heterogeneous fenton catalytic reactivity: A review,” Applied Catalysis B:
Environmental, vol. 255. Elsevier B.V., Oct. 15, 2019.
J, Rivera-Utrilla, M. Sánchez-Polo, M. A. Ferro-Garcia, G. Prados-loya, and
R. Ocampo-Pérez, “Pharmaccuticals as emerging contaminants and their removal from water. A review,” Chemosphere, vol. 93, no. 7. Elsevier Ltd, pp.
1268-1287, 2013.
H. Li, C. Shan, and B. Pan, “Fe(III)-Doped g-C:Ny Mediated Peroxymonosulfate Activation for Selective Degradation of Phenolic Compounds via High- Valent Iron-Oxo Species,” Environ Sci Technol, vol. 52, no. 4, pp. 2197-2205, Feb. 2018.
X. Duan ef al, “Insights into perovskite-catalyzed peroxymonosulfate activation: Maneuverable cobalt sites for promoted evolution of sulfate
radicals,” Appl Catal B, vol. 220, pp. 626-634, 2018.
X. R. Xu and X. Z. Li, “Degradation of azo dye Orange G in aqueous solutions by persulfate with ferrous ion,” Sep Purif Technol, vol. 72, no. 1, pp. 105-111, Mar. 2010.
€, Tan, N. Gao, Y. Deng, W. Rong, S. Zhou, and N. Lu, “Degradation of
antipyrine by heat activated persulfate,” Sep Purif Technol, vol. 109, pp. 122—
128, 2013.
Z. Wang, Y. Shao, N. Gao, and N. An, “Degradation kinctic of dibuty! phthalate (DBP) by sulfate radical- and hydroxyl radical-based advanced oxidation process in UV/persulfate system,” Sep Purif Technol, vol. 195, pp. 92-100, Apr. 2018.
M. Marchesi, N. R. Thomson, R. Aravena, K. S. Sra, N. Otero, and A. Soler,
“Carbon isotope fractionation of 1,1,1-trichloroethane during base-catalyzed persulfate treatment,” J Hazard Mater, vol. 260, pp. 61-66, Sep. 2013.
R. Yin et a/., “Enhanced peroxymonosulfate activation for sulfamethazine degradation by ultrasound irradiation: Performances and mechanisms,”
Chemical Engineering Journal, vol. 335, pp. 145-153, Mar. 2018.
46
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
Y. Zhou et al., “Activation of Peroxymonosulfate by Benzoquinone: A Novel Nonradical Oxidation Process,” Environ Sci Technol, vol. 49, no. 21, pp.
12941-12950, Nov. 2015.
J. Li, Y. Ren, F. Ji, and B. Lai, “Heterogeneous catalytic oxidation for the degradation of p-nitrophenol in aqucous solution by persulfate activated with CuFe20,4 magnetic nano-particles,” Chemical Engineering Journal, vol. 324,
pp. 63-73, 2017.
X. Zheng ef al., “Metal-based catalysts for persulfate and peroxymonosulfate activation in heterogeneous ways: A review,” Chemical Engineering Journal, vol. 429, Feb. 2022.
Q. Zhang, C. S. Dandeneau, X. Zhou, and G. Cao, “ZnO Nanostructures for Dye-Sensitized Solar Cells.” Advanced Materials, vol. 21, no. 41, pp. 4087—
4108, Nov. 2009.
D. Liu, X. Xue, X. Zhang, Y. Huang, and P. Feng, “Highly efficient peroxymonosulfate activation by MOFs-derived oxygen vacancy-rich Cos04/ZnO p-n heterojunction nanocomposites to degrade pefloxacin,” Sep Purif Technol, vol. 305, p. 122451, lan. 2023.
R. P. Schwarzenbach ef al., “The Challenge of Micropollutants in Aquatic Systems,” Science (1979), vol. 313, no. 5790, pp. 1072-1077, Aug. 2006.
Inamuddin, “Xanthan gum/titanium dioxide nanocomposite for photocatalytic degradation of methyl orange dye,” mí J Biol Macromol, vol. 121, pp. 1046-
1053, Jan. 2019.
S. Benkhaya, S. M’ rabet, and A. El Harfi, “A review on classifications, recent synthesis and applications of textile dyes,” Jnorg Chem Commun, vol. 115, p.
107891, May 2020.
H. D. Bouras ef al., “Biosorption characteristics of methylene blue dye by two fungal biomasses,” International Journal of Environmental Studies, vol. 78, no.
3, pp. 365-381, May 2021.
1. Khan, I. Khan, M. Usman, M. Imran, and K. Saeed, “Nanoclay-mediated photocatalytic activity enhancement of copper oxide nanoparticles for enhanced methyl orange photodegradation,” Journal of Materials Science:
Materials in Electronies, vol. 31, no. 11, pp. 8971-8985, Jun. 2020.
M. Ahmad ef a/., “Phytogenic fabrication of ZnO and gold decorated ZnO nanoparticles for photocatalytic degradation of Rhodamine B,” J Environ Chem Eng, vol. 9, no. 1, p. 104725, Feb. 2021.
47
[22]
[23]
[24]
[25]
[26]
[27]
[28]
[29]
[30]
(31)
[32]
F. Mashkoor and A. Nasar, “Magsorbents: Potential candidates in wastewater treatment technology — A review on the removal of methylene blue dye,” J Magn Magn Mater, vol, 500, p. 166408, Apr. 2020.
S. Shakoor and A. Nasar, “Adsorptive decontamination of synthetic wastewater containing crystal violet dye by employing Terminalia arjuna sawdust waste,”
Groundw Sustain Dev, vol. 7, pp. 30-38, Sep. 2018.
J. O. Amode, J. H. Santos, Z. Md. Alam, A. H. Mirza, and C. C. Mei,
“Adsorption of methylene blue from aqueous solution using untreated and treated (Metroxylon spp.) waste adsorbent: equilibrium and kinetics studies,”
International Journal of Industrial Chemistry, vol. 7, no. 3, pp. 333-345, Sep.
2016,
H. Kahlert, G. Meyer, and A. Albrecht, “Colour maps of acid-base titrations with colour indicators: how to choose the appropriate indicator and how to estimate the systematic titration errors,” ChemTexts, vol. 2, no. 2, p. 7, Jun.
2016.
J. Zhang, Y. Zhang, Y. Lei, and C. Pan, “Photocatalytic and degradation mechanisms of anatase TIO2: a HRTEM study,” Catal Sei Technol, vol. 1, no.
2, p. 273, 2011.
M. E. K. Saad, N. Mnasri, M. Mhamdi, T. Chafik, E. Elaloui, and Y. Moussaoui,
“Removal of methylene blue onto mineral matrices,” Desalination Water Treat, vol. 56, no. 10, pp. 2773-2780, Dec. 2015.
S. Huang er ai., “Monitoring of oxygen using colorimetric indicator based on graphene/TiO2 composite with first-order kinetics of methylene blue for modified atmosphere packaging,” Packaging Technology and Science, vol. 31, no. 9, pp. 575-584, Sep. 2018.
J. Lin, Z. Luo, J. Liu, and P. Li, “Photocatalytic degradation of methylene blue
in aqucous solution by using ZnO-SnO: nanocomposites,” Mater Sci Semicond Process, vol. 87, pp. 24-31, Nov. 2018.
I. Khan et al., “Review on Methylene Blue: Its Properties, Uses, Toxicity and Photodegradation,” Water (Basel), vol. 14, no. 2, p. 242, Jan. 2022.
H. M. Dao er al., “Methylene blue as a far-red light-mediated photocleavable multifunctional ligand,” Chemical Communications, vol. 56, no. 11, pp. 1673-
1676, 2020.
G. Lu et al., “Efficacy and safety of methylene blue in the treatment of malaria:
a systematic review,” BMC Med, vol. 16, no. 1, p. 59, Dec. 2018.
48
[33]
[34]
[35]
[36]
[37]
[38]
[39]
[40]
[41]
[42]
[43]
B. Saha, S. Chowdhury, D. Sanyal, K. Chattopadhyay, and G. Suresh Kumar,
“Comparative Study of Toluidine Blue O and Methylene Blue Binding to Lysozyme and Their Inhibitory Effects on Protein Aggregation,” ACS Omega,
vol. 3, no. 3, pp. 2588-2601, Mar. 2018.
M. Marimuthu, B. Praveen Kumar, L. Mariya Salomi, M. Vecrapandian, and K. Balamurugan. “Methylene Blue-Fortified Molybdenum Trioxide Nanoparticles: Harnessing Radical Scavenging Property,” ACS App! Mater
Interfaces, vol. 10, no. 50, pp. 43429-43438, Dec. 2018.
A. C. Nwanya ef al., “Industrial textile effluent treatment and antibacterial
effectiveness of Zea mays L. Dry husk mediated bio-synthesized copper oxide nanoparticles,” J Hazard Mater, vol. 375, pp. 281-289, Aug. 2019.
R. C. Dante et aí., “Methylene bluc-carbon nitride system as a reusable air- sensor,” Mater Chem Phys, vol. 231, pp. 351-356, Jun. 2019.
P. O. Oladoye, T. O. Ajiboye, E. O. Omotola, and O. J. Oyewola, “Methylene blue dye: Toxicity and potential elimination technology from wastewater,”
Results in Engineering, vol. 16, p. 100678, Dec. 2022.
S. Li, Y. Cui, M. Wen, and G. Ji, “Toxic Effects of Methylene Blue on the Growth, Reproduction and Physiology of Daphnia magna,” Zoxics, vol. 11, no.
7, p. 594, Jul. 2023.
A. M. Kosswattaarachchi and T. R. Cook, “Repurposing the Industrial Dye Methylene Blue as an Active Component for Redox Flow Batteries,”
ChemElectroChem, vol. 5, no. 22, pp. 3437-3442, Nov. 2018.
R. Kodasma, B. Palas, G. Ersửz, and S. Atalay, “Photocatalytic activity of copper ferrite graphene oxide particles for an efficient catalytic degradation of Reactive Black 5 in water,” Ceram Int, vol. 46, no. 5, pp. 6284-6292, Apr.
2020.
M. Sultan and R. Singh, “Magnetization and crystal structure of RF-sputtered nanocrystalline CuFe2O, thin films,” Mater Lett, vol. 63, no. 21, pp. 1764-
1766, Aug. 2009.
W. Ponhan and §. Maensiri, “Fabrication and magnetic properties of electrospun copper ferrite (CuFe204) nanofibers,” Solid State Sci, vol. 11, no.
2, pp. 479-484, Feb. 2009.
N. El Messaoudi ef a/., “Green synthesis of CuFe20s nanoparticles from bioresource extracts and their applications in different areas: a review,”
Biomass Convers Biorefin, lan. 2024.
49
[44]
[45]
[46]
[47]
[48]
[49]
[50)
[S1]
[52]
[53]
[54
[55]
M. Saidani, W. Belkacem, and N. Mliki, “Chemical charge neutrality coupled to low temperature magnetic measurements method to estimate the cationic distribution for spinel ferrites,” J Alloys Compd, vol. 729, pp. 1177-1182, Dec.
2017.
R. Dom, R. Subasri, K. Radha, and P. H. Borse, “Synthesis of solar active nanocrystalline ferrite, MFe2Os (M: Ca, Zn, Mg) photocatalyst by microwave
irradiation,” Solid State Commun, vol. 151, no. 6, pp. 470-473, Mar. 2011.
S. Bassaid, M. Chaib, S. Omeiri, A. Bouguelia, and M. Trari, “Photocatalytic reduction of cadmium over CuFeO: synthesized by sol-gel,” J Photochem
Photobiol A Chem, vol, 201, no. 1, pp. 62-68, Jan. 2009,
T. Tsoncheva ef al, “Thermally synthesized nanosized copper ferrites as
catalysts for environment protection,” Catal Commun, vol. 12, no. 2, pp. 105—
109, Nov. 2010.
J. E. Tasca, C. E. Quincoces, A. Lavat, A. M. Alvarez, and M. G. Gonzalez.
“Preparation and characterization of CuFe2O, bulk catalysts, Ceram Int, vol.
37, no. 3, pp. 803-812, Apr. 2011.
H.-C. Lu, J.-E. Chang, P.-H. Shih, and L.-C. Chiang, “Stabilization of copper sludge by high-temperature CuFe2Os synthesis process,” J Hazard Mater, vol.
150, no. 3, pp. 504-509, Feb. 2008.
N. Hamdan, M. Abu Haija, F. Banat, and A. Eskhan, “Heterogeneous catalytic degradation of phenol by a Fenton-type reaction using copper ferrites (CuFe204),” Desalination Water Treat, vol. 69, pp. 268-283, 2017.
C. S. S. R. Kumar and F. Mohammad, “Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery,” Adv Drug Deliv Rev, vol. 63, no. 9, pp. 789-808, Aug. 2011.
F. Valente e¢ al., “Nanoparticle drug delivery systems for inner ear therapy: An overview,” J Drug Deliv Sci Technol, vol. 39, pp. 28-35, Jun. 2017.
Z. Sun, L. Liu, D. zeng Jia, and W. Pan, “Simple synthesis of CuFe20;
nanoparticles as gas-sensing materials,” Sens Actuators B Chem, vol. 125, no.
1, pp. 144-148, Jul. 2007.
M. Brienza and I. Katsoyiannis, “Sulfate Radical Technologies as Tertiary Treatment for the Removal of Emerging Contaminants from Wastewater,”
Sustainability, vol. 9, no. 9, p. 1604, Sep. 2017.
C. Liu, B. Wu, and X. Chen, “Sulfate radical-based oxidation for sludge
treatment: A review,” Chemical Engineering Journal, vol. 335, pp. 865-875, Mar. 2018.
50
[56]
[57]
[58]
[59]
[60]
[61]
[62]
[63]
[64]
[65]
[66]
J. Rodriguez-Chueca, C. Garcia-Caiiibano, R.-l. Lepisté, A. Encinas, J.
Pellinen, and J. Marugan, “Intensification of UV-C tertiary treatment:
Disinfection and removal of micropollutants by sulfate radical based Advanced Oxidation Processes,” J Hazard Mater, vol. 372, pp. 94-102, Jun. 2019,
N. laafarzadch M. Omidinasab, and F. Ghanbari, “Combined electrocoagulation and UV-based sulfate radical oxidation processes for
treatment of pulp and paper wastewater,” Process Safety and Environmental Protection, vol. 102, pp. 462-472, Jul. 2016.
L. Zhou, M. Sleiman, C. Ferronato, J.-M. Chovelon, and C. Richard,
“Reactivity of sulfate radicals with natural organic matters,” Environ Chem Lett, vol. 15, no. 4, pp. 733-737, Dee. 2017.
S. Paria, “Surfactant-enhanced remediation of organic contaminated soil and water,” Adv Colloid Interface Sci, vol. 138, no. |, pp. 24-58, Apr. 2008.
Y. Feng et đ/., “Facile synthesis of highly reactive and stable Fe-doped g-C3N4 composites for peroxymonosulfate activation: A novel nonradical oxidation process,” J Hazard Mater, vol. 354, pp. 63-71, Jul. 2018..
G.-D. Fang, D. D. Dionysiou, Y. Wang, S. R. Al-Abed, and D.-M. Zhou,
“Sulfate radical-based degradation of polychlorinated biphenyls: Effects of chloride ion and reaction kinetics,” J Hazard Mater, vol. 227-228, pp. 394—
401, Aug. 2012.
D. H. K. Reddy and Y.-S. Yun, “Spinel ferrite magnetic adsorbents: Alternative future materials for water purification?,” Coord Chem Rey, vol. 315, pp. 90-
111, May 2016.
Y. Xu, J. Ai, and H. Zhang, “The mechanism of degradation of bisphenol A using the magnetically separable CuFe:O‹/peroxymonosulfate heterogeneous oxidation process,” J Hazard Mater, vol. 309, pp. 87-96, May 2016.
B. He et al., “CuFe202/CuO magnetic nano-composite activates PMS to remove ciprofloxacin: Ecotoxicity and DFT calculation,” Chemical Engineering Journal, vol. 446, p. 137183, Oct. 2022.
Y. Zeng, G. Zhou, D. He, and G. Peng, “Catalytic Degradation of Ciprofloxacin in Aqueous Solution by Peroxymonosulfate Activated with a Magnetic
CuFe,04@Biochar Composite,” /nt J Mol Sei, vol. 24, no. 6, p. 5702, Mar.
2023.
X. Lei et al., “CuFe204@GO nanocomposite as an effective and recoverable catalyst of peroxymonosulfate activation for degradation of aqucous dye
51
[67]
[68]
[69)
[70]
[71]
[72]
[73]
[Z4]
[75]
pollutants,” Chinese Chemical Letters, vol. 30, no. 12, pp. 2216-2220, Dec.
2019.
X. Liu et al., “Construction of Z-scheme CuFe2O4/MnO> photocatalyst and activating peroxymonosulfate for phenol degradation: Synergistic effect, degradation pathways, and mechanism,” Environ Res, vol. 200, p. 111736, Sep.
2021.
A. Massoud-Sharifi, G. K. Kara, and M. Rabbani, “CuFe2Oô@CuO: A Magnetic Composite Synthesized by Ultrasound Irradiation and Degradation of Methylene Blue on Its Surface in the Presence of Sunlight,” in The 4th International Electronic Conference on Water Sciences, Basel Switzerland:
MDPI, Nov. 2019.
G. L. Kabongo, G. H. Mhlongo, B. M. Mothudi, K. T. Hillic, P. S. Mbule, and M. S. Dhlamini, “Structural, photoluminescence and XPS properties of Tm3+
ions in ZnO nanostructures,” J Lumin, vol. 187, pp. 141-153, Jul. 2017.
A. A. K. Bakly, B. F. Spencer, and P. O’Brien, “The deposition of thin films of cadmium zinc sulfide Cdi-x.ZnxS at 250°C from spin-coated xanthato complexes: a potential route to window layers for photovoltaic cells,” J Mater Sci, vol. 53, no, 6, pp. 4360-4370, Mar, 2018.
K. Zhang et al., “Efficient peroxymonosulfate activation in clectron-rich/poor reaction sites induced by copper-iron oxide heterojunctions/interfaces:
Performance and mechanism,” Chemical Engineering Journal, vol. 423, p.
129971, Nov. 2021.
A. Vu Nang, H. Le Thi Ngoc, P. Dang Tan, A. Le Dang Thanh, H. Do Ngoc, and H. Le Van, “Magnetic recoverable Cu/CuFe2Os nanocomposite as an efficient catalyst for 4-nitrophenol reduction and methylene blue degradation,”
Science & Technology Development Journal — Natural Sciences, 2022.
V. H. Phan, T. U. Tran Thi, and T. K. Le, “Synthesis, characterization and photo-Fenton catalytic activity of magnetic CuFe204/Fe203 materials,” Science and Technology Development Journal - Natural Sciences, vol. 5, no. 3, p. first,
Jun. 2021.
A. Nang Vu, N. H. Thi Le, N. H. Nguyen, B. Tran Huynh, and H. Van Le,
“Magnetic recoverable CuFe2Oz/cellulose nanocrystal composite as an efficient catalyst for 4-nitrophenol reduction” Science and Technology Development Journal - Natural Sciences, 2021.
C. G. Quan and K. T. Le, “Preparation of magnetic photo-Fenton catalysts based on CuFe2O4 by the starchassisted sol-gel method,” Science and
[76]
[77]
[78]
[79]
[80]
[81]
[82]
[83]
[84]
[85]
Technology Development Journal - Natural Sciences, vol. 1, no. TS, pp. 102- 109, Nov. 2018.
X. Guo, K. Wang, and Y. Xu, “Tartaric acid enhanced CuFe204-catalyzed heterogencous photo-Fenton-like degradation of methylene blue,” Materials Science and Engineering: B, vol. 245, pp. 75-84, Jun. 2019.
I. Othman, M. Abu Haija, and F. Banat, “Catalytic Properties of Phosphate- Coated CuFe2Os Nanoparticles for Phenol Degradation,” J Nanomater, vol.
2019, pp. 1-8, Mar. 2019.
B. He et al., “CuFe204/CuO magnetic nano-composite activates PMS to remove ciprofloxacin: Ecotoxicity and DFT calculation,” Chemical Engineering Journal, vol. 446, p. 137183, Oct. 2022.
A. Soufi, H. Hajjaoui, R. Elmoubarki, M. Abdennouri, S. Qourzal, and N.
Barka, “Heterogeneous Fenton-like degradation of tartrazine using CuFeaOa nanoparticles synthesized by sol-gel combustion,” Applied Surface Science Advances, vol. 9, p. 100251, Jun. 2022.
M. V. López-Ramón, M. A. Alvarez, C. Moreno-Castilla, M. A. Fontecha- Camara, Á. Yebra-Rodriguez, and E. Bailón-García, “Effect of calcination
temperature of a copper ferrite synthesized by a sol-gel method on its structural characteristics and performance as Fenton catalyst to remove gallic acid from
water,” J Colloid Interface Sci, vol. 511, pp. 193-202, Feb. 2018.
K. Ali et al., “Synthesis of CuFe20s-ZnO nanocomposites with enhanced electromagnetic wave absorption properties,” J Alloys Compd, vol. 705, pp.
559-565, May 2017.
Z. Mitié er al., “Instrumental methods and techniques for structural and
physicochemical characterization of biomaterials and bone tissue: A review,”
Materials Science and Engineering: C, vol. 79, pp. 930-949, Oct. 2017,
S. V. Otari ef al, “Copper Ferrite Magnetic Nanoparticles for the Immobilization of Enzyme,” Jndian J Microbiol, vol. 59, no. 1, pp. 105-108, Mar. 2019.
A. Zare, A. Saadati, and S. Sheibani, “Modification of a Z-scheme ZnO-CuO nanocomposite by Ag loading as a highly efficient visible light photocatalyst,”
Mater Res Bull, vol. 158, p. 112048, Feb, 2023.
P. Oulego, M. A. Villa-García, A. Laca, and M. Diaz, “The effect of the synthetic route on the structural, textural, morphological and catalytic propertics of iron(IH) oxides and oxyhydroxides,” Dalton Transactions, vol.
45. no. 23. pp. 9446-9459, 2016.
33
[86]
[87]
[88]
[89]
[90]
[91]
[92]
[93]
[94]
[95]
[96]
S. Bashir et a/., “In-vivo (Albino Mice) and in-vitro Assimilation and Toxicity
of Zinc Oxide Nanoparticles in Food Materials,” /nt J Nanomedicine, vol.
Volume 17, pp. 4073-4085, Sep, 2022.
N. Venkatesha, Y. Qurishi, H. S. Atreya, and C. Srivastava, “ZnO coated CoFe204 nanoparticles for multimodal bio-imaging,” RSC Ady, vol. 6, no. 23, pp. 18843-18851, 2016.
A. Chinnathambi, “Synthesis and characterization of spinel FeV20ô coupled ZnO nanoplates for boosted white light photocatalysis and antibacterial applications,” J Alloys Compd, vol. 890, p. 161742, Jan. 2022.
P.U. Okoye, S. Wang, L. Xu, S. Li, J. Wang, and L. Zhang, “Promotional effect of calcination temperature on structural evolution, basicity, and activity of oil
palm empty fruit bunch derived catalyst for glycerol carbonate synthesis,”
Energy Convers Manag, vol. 179, pp. 192-200, Jan. 2019.
S. Guo, L. Zhang, M. Chen, F. Ahmad, H. Fida, and H. Zhang, “Heterogeneous Activation of Peroxymonosulfate by a Spinel CoAl:O¿ Catalyst for the Degradation of Organic Pollutants,” Catalysts, vol. 12, no. 8, p. 847, Aug.
2022.
Y. Wang, D. Tian, W. Chu, M. Li, and X. Lu, “Nanoscaled magnetic CuFe20 as an activator of peroxymonosulfate for the degradation of antibiotics norfloxacin,” Sep Purif Technol, vol. 212, pp. 536-544, Apr. 2019.
L. J. Xu, W. Chu, and L. Gan, “Environmental application of graphene-based CoFe:Ox as an activator of peroxymonosulfate for the degradation of a plasticizer,” Chemical Engineering Journal, vol. 263, pp. 435-443, Mar. 2015.
X. Zhang, M. Feng, R. Qu, H. Liu, L. Wang, and Z. Wang, “Catalytic degradation of diethyl phthalate in aqueous solution by persulfate activated with nano-scaled magnetic CuFe:Oxs /MWCNTs,” Chemical Engineering Journal, vol. 301, pp. 1-11, Oct. 2016.
X. Lei et al., “CuFe204@GO nanocomposite as an effective and recoverable catalyst of peroxymonosulfate activation for degradation of aqueous dye pollutants,” Chinese Chemical Letters, vol. 30, no. 12, pp. 2216-2220, Dec.
2019.
Y. Wang, D. Tian, W. Chu, M. Li, and X. Lu, “Nanoscaled magnetic CuFeOs as an activator of peroxymonosulfate for the degradation of antibiotics norfloxacin,” Sep Purif Technol, vol. 212, pp. 536-544, Apr. 2019.
Y. Wang, Y. Xue, and C. Zhang, “Generation and application of reactive chlorine species by electrochemical process combined with UV irradiation:
54
[97]
[98]
[99]
Synergistic mechanism for enhanced degradation performance,” Science of The Total Environment, vol. 712, p. 136501, Apr. 2020.
Y. Huang ef đi, “Catalytic degradation of ciprofloxacin by magnetic CuS/Fe203/Mn203 nanocomposite activated peroxymonosulfate: Influence factors, degradation pathways and reaction mechanism.” Chemical Engineering Journal, vol. 388, p. 124274, May 2020.
Y. Peng, H. Tang, B. Yao, X. Gao, X. Yang, and Y. Zhou, “Activation of peroxymonosulfate (PMS) by spinel ferrite and their composites in degradation
of organic pollutants: A Review,” Chemical Engineering Journal, vol. 414, p.
128800, Jun. 2021.
X. Wu, D. Sun, H. Ma, C. Ma, X. Zhang, and J. Hao, “Activation of
peroxymonosulfate by magnetic CuFe204@ZIF-67 composite catalyst for the study on the degradation of methylene blue,” Colloids Surf A Physicochem Eng Asp, vol. 637, p. 128278, Mar. 2022.
[100] H. Mohammadi er a/., “Effective activation of peroxymonosulfate by MMT- CuFe:Ox composite in the degradation of methylene blue from aqueous solutions: Characteristics, influence of parameters, and degradation mechanism,” Desalination Water Treat, vol. 317, p. 100221, Jan. 2024.
[101] Z. Li et aí., “Heterogencous catalytic degradation of organic pollutants by peroxymonosulfate activated with nitrogen doped graphene oxide loaded CuFe204,” Colloids Surf A Physicochem Eng Asp, vol. 577, pp. 202-212. Sep.
2019.
55
PHỤ LỤC
Phụ luc A: Giản đồ nhiễu xạ tia X
3 | Cats ove
|
Ba z z z pm 5 a
2 Thats (Coupted Two eta’ Theta) WL+1.54960
` =. a .3 . ` >
Hình A-1.Gian đồ nhiều xạ tia X của CFO
7 | 208CZử0w
#Iheid (Cougtod Fw2The*a/Yeta) VWLs1 6409)
Hình A-2. Giản đồ nhiễu xạ tia X của CFOZ-10%
$6
Phụ lục B: Kết quả phân tích EDX
Specren processing
No peeks e1
fvocesátg option : Al ckrnents eradjted ƒVccrsstae4 |
Nurster of Meradoes = 5
2re^#e-2
O $02 12:133312224M
Fe Fe 120>+199912(©AM
Os Cy 1925-12221200AM
In Dh ldo 399912004
Week A!£tfvCX
23.68 sả)
Z0 ms
“1% at
4n 72
1 ì 3 4 £
NA Siete S71 (tý Cư 0.00) fev
37
%Oectrưn œcceudsg
Mo peaks omtted
Procersing cp4ce© - AI elerrerts sral/ze2 (NecrreatseZ)
MNazreber of teretion = 3
Fardes
O %02 l-Am-1933 1200 Au
fe fe Duue29991200AN
Ce OCs 126r192212(0AM
In 1> 1d 10221100//A
—————————
`
turar. Wegrs Aare
OK 28.68 (613 L 14 33.20 1?
Gut uae 1302
iat 45 to
c£rrnert 1 2 3 ‘ 4 6 ? 8 6 10
A Scx 406 c®x Cư 5x 0 (CÓ bev
58
Spectwn coctvz*,
Wo peaks centted
Processing option - All elements srod g1e6 (Worrradtech
Norsber of Rerations ô 5
Set
© 902 122-13331200AM
fe fe 1-ier-190012GO AM
Củ Cu lfun-1999 12:00AM
Zn In àn-12221200AM
Đemest Weg sori
or 3.67 $6.33
fe S743 6
Cet 19% 119
mL 16.72 bs
Commest