. Alberto Yuji Numoto, Pedro Soares Vidigal Filho, Carlos Alberto Scapim, Antômo Augusto Nogueira Franco, Alex Henrique Tiene Ortiz, Odair José Marques, Murilo Fuentes Pelloso (2019). “Agronomic performance and sweet corn quality as a function of inoculant doses (Azospirillum
brasilense) and nitrogen fertilization management in summer harvest”.
Bragantia, Campinas, v, 78, n, 1, p,26-37.
. Afshar E,, M, Afshar, E, Afshar, M,J, Fereidoom, (2004). “The Effect of Different Levels of Nitrogen on Yield and Yield Components of two Sweet
Corn Varieties in Yasouj Region ”. Journal of Plant Ecophysiology.
. Aarti Verma; Tomar, G, S, (2014). “Effect of planting geometry and nitrogen levels on growth, green cob yield and economics of sweet corn (Zea mays var, saccharata Sturt.)”. International Journal of Agricultural Sciences 2014 Vol,10 No,2 pp,766-769 ref,8
. Azizi F, Mahrokh A, (2013). “Plant density effect in different planting dates on growth indices, yield and yield components of sweet corn cultivar KSC403su”. Iranian Journal of Field Crops Research Winter 2013, Volume 10, Number 4; Page(s) 764 to 773.
. A Sabur, L Pramudyani, M Yasin, J Purnomo, (2015). Application of biological fertilizers on growth and yield of sweet corn (Zea mays saccharata Sturt)
in dry land.
. Bùi Huy Hiền (2002). “Tình hình sử dụng phân bón ở Việt Nam và vai trò của phân hon hợp NPK khi bón day đủ và cân đối để thâm canh cây trong và bảo vệ môi trường”. Hội thao sản xuất và sử dung phân bón Lâm Thao, Hà
Nội, tr 1-2.
. Bharud, S, R,; Bharud, R, W,; Mokate, A, S, (2014). “Yield and quality of sweet corn [Zea mays (L,) var, saccharata] as influenced by planting geometry
and ƒerHlzer levels”. International Journal of Plant Sciences (Muzaffarnagar) 2014 Vol,9 No,1 pp,240-243 ref.9.
8. Chavan P, G,, Pawar P, P,, More S, A,, Chavan S, A, (2016). “Yield and nutrient uptake by sweet corn as influenced by sowing dates and plant spacing under lateritic soils of Konkan”, A Quarterly Journal of Life Sciences 2016, Volume 13, Issue la.
9. Can, M,; Akman, Z, (2014). “Effects of different nitrogen doses on yield and
10.
11.
12.
14.
lọ,
quality components of sweet corn (Zea mays var, saccharata Sturt,) under usak ecological conditions”. Ziraat Fakiltesi Dergisi - Stileyman Demirel Universitesi 2014 Vol,9 No,2 pp,93-101 ref.34.
Debreczeni K, (2000). “Response of two maize hybrids to different fertilizer-N forms (NH4-N and NO3-N)”. Communications in Soil Science and Plant
Analysis, 31, 2251- 226.
De Grazia J, Tittonell PA, Germinara D, Chiesa A (2003). “Phosphorus and nitrogen fertilisation in sweet corn (Zea mays L, var, saccharata Bailey) ”.
Spanish Journal of Agricultural Research, 1(2):103-107.
Đường Hồng Dat (2003). “Sổ tay hướng dan sử dung phân bon”. Nhà xuất bản
Nông Nghiệp, năm 2002.
. Eshgizadeh, H, R,, Zahedi, M,, Ashrafi, A,, KhaJepoor, M, R, (2010). “The effect of irrigation regime and plant density on growth and development, leaf moisture content and yield of sweet corn (KSC 404)”. Agronomy Journal.
Farshbaf, S,; Yarnia, M, (2014). “The effect of nitrogen and plant density on competitive ability of sweet corn against weeds”. Indian Journal of Fundamental and Applied Life Sciences 2014 Vol,4 No,4 pp,18-25 ref.24.
Gaikwad J, D, Patil V, O, Kohire, Kokate R, M, Chavan A, S, Kakde V, S, (2015). “Influence of spacing, planting methods and nutrient management
16.
17.
18.
19.
20.
21,
22.
23.
on productivity of sweet corn”. A Quarterly Journal of Life Sciences 2015, Volume 12, Issue 2B.
Haghighat, A,; Rad, A, H, S,; Seifzadeh, S,; Zandi, P,; Yousefi, M, (2011).
“Effect of plant density and cattle manure on some agronomic traits of sweet corn under different culture methods”. Australian Journal of Basic and Applied Sciences 2011 Vol, 5 No, 12 pp, 2060 - 2064 ref.19.
Khazaei F,, Aghaalikhani M,, (2011). “Nitrogen rate and plant density effect on dry matter accumulation and fresh ear yield of sweet corn”. Applied Field Crops Research (Pajouhesh & Sazandegi) Fall 2011, Volume 24, Number 3 (92); Page(s) 1 To 8.
Lê Xuân Dinh (2005). “Zam nhìn nông nghiệp ”. Nhà xuất ban Nông Nghiệp.
Lê Thị Kiều Oanh, Đặng Văn Minh và Tran Trung Kiên (2014). “Anh hưởng của thời vụ, phân bón đến năng suất và chất lượng giống bắp nếp lai trong
vụ xuán 2013 và 2014”.
Marwanto Marwanto, Shinta Puspita Wati, Atra Romeida, Merakati Handajaningsih, Usman Siswanto, Teguh Adiprasetyo, Bambang Gonggo Murcitro and Hidayat Hidayat (2019). “Bio-fortified Compost as A Substitute for Chemical N Fertilizer for Growth, N Accumulation and Yield of Sweet Corn”. Akta Agrosia, 2019, 22(2):84-94.
Mathukia R, K, Choudhary R, P, Shivran Ashish, Bhosale Nilima (2014).
“Response of rabi sweet corn (Zea mays L, var, saccharata Sturt) to plant geometry and fertilizer”. Current Advances in Agricultural Sciences (An International Journal) 2014, Volume 6, Issue 2.
Ngô Hữu Tinh (2003). “Cáy bắp”. Viện nghiên cứu va phổ biến kiến thức bach khoa, Nhà xuất bản Nghệ An.
Nguyễn Kim Như Vân (2017). “Khảo nghiệm 15 giống bắp ngọt (Zea mays
var, saccharata) nhập nội và ảnh hưởng của khoảng cách trồng đến kha
24.
25.
26.
Zi
28.
29.
30.
năng sinh trưởng, phát triển, năng suất va chất lượng của 03 giống bap
ngot”, Luận Văn Thạc Sĩ Khoa Học Nông Nghiệp, Truong Dai học Nông Lâm TP,HCM.
Narg Mousa, Hamidreza Blouchi, (2012). Effects of Nitrogen and Phosphorus chemical and biological fertilizers on yield and yield components of sweet corn (Zea mays var saccharata). International Journal of Plant Production 19(4):55-76.
Ozata, E, Gegit, H, H, S,, Unver L, (2016). “Effect of different plant densities on the agricultural properties of sweet corn (Zea mays vat, saccharata Sturt,) under Middle Blacksea ecological conditions”, Jornal of Central Research Institute for Field Crops.
Pham Thi Tài, Trương Dinh (2005). “Ky Thuật trong bap giống mới năng suất cao”. Nhà xuất ban Lao động — Xã hội, trang 82 va trang 85-88.
Patrick, L, (2001). “Guidelines for Trial in Corn for Hybrid Seed Production”, American Economic Association, pp, 92 — 117.
Priyanka Kumawat; Kaushik, M, K, Dilip Singh, Kiran Kumawat, (2014).
“Yield, nutrient content, uptake and quality of sweet corn varieties as influenced by nitrogen and phosphorus fertilization under Southern Rajasthan condition”. Annals of Agri Bio Research 2014 Vol,19 No,1 pp.67-69 ref.4.
Patel, Lakum, Parma, Suthar, (2015). “Effect of integrated nutrient management and spacing on green cob yield, quality parameter and economic of sweet corn (Zea mays saccharata sfuwrf) ”. Journal of Pure and Applied Microbiology Vol. 9, Issue 4.
QCVN 01-56 : 2011/BNNPTNT “Quy chuẩn kỹ thuật quốc gia về khảo nghiệm giá trị canh tác và sử dụng của giống bắp” của Bộ nông nghiệp và Phát
triên nông thôn.
31.
32.
34.
5D.
37.
38.
R,Shintri; Desai, B, K, Sharana Basana; Rajesh, S, R, Prashanth, K, M, Ranyith, T, H, (2014). “Effect of nutrient management and plant density on growth and yield of sweet corn (Zea may L, var, saccharata)”. Environment and Ecology 2014 Vol,32 No,4A pp,1532-1534 ref.4.
Rahmani Atena, Nasrollah Al Hosseini Seyed Majid, Khavari Khorasani Said (2016). “Effects of sowing date and plant density on morphological triats, yield and yield components of sweet corn (Zea may L, var, saccharata) ”.
. Schultheis J, R, (1998). “Sweet corn”. Production, North Carolina State University.
Subhankar Purohit, Gayatree Mishra, Kiran Kumar Mohapatra and GC Mishra,
“A critical review on Integrated Nutrient Management (INM) in sweet corn”. Journal of Pharmacognosy and Phytochemistry 2020; 9(3): 2213- 2219.
Sunitha, N,; Reddy, P, M, (2012). “Effect of graded nutrient levels and timing nitrogen application on yield and quality of sweet corn (Zea mays L,)”.
Madras Agricultural Journal 2012 Vol,99 No,4/6 pp,240-243 ref.11.
. Shanti, J, Sreedhar, M, Durga, K, Kanaka, Keshavulu, K, Bhave, M, H, V, Ganesh, M, (2012). “Influence of Plant Spacing and Fertilizer Dose on Yield Parameters and Yield of Sweet Corn (Zea mays L,)”. International Journal of Bio-Resource & Stress Management, Mar 2012, Vol, 3 Issue 1, p040-043, 4p.
Spandana Bhatt, Yakadri M,, Sivalakshmi Y, and Vyaykumar Bhosekar (2011). “Production Potential of Sweet Corn (Zea maysL, var, saccharata) As Influenced by Varying Plant Densities and Nitrogen Levels”. Fundamental for life: Soil, Crop & Environmental Science.
Srdié, J,; Simié, M, Videnovié, Z, Paji¢, Z, Dragigevic V, (2011). “Effects of
genotype and sowing densities on ear yield and shelling percentage of
sweet corn (Zea mays L, var, saccharata)”. Climate change: challenges and opportunities in agriculture, AGRISAFE Final Conference, 21 - 23 March 2011, Budapest, Hungary, Proceedings,
39. Vince F, Cindy B, T, Carl J, R, and Jerry A, W, (2002). “Sweet corn (Zea mays var, saccharata Rugosa) ”. University of Minnessota, US.
40. Wagh DS (2002). “Effect of spacing and integrated nutrient management on growth and yield of sweet corn (Zea mays L, var, saccharata)”. M, Sc, Thesis.
41. Wang Hui, Pan LingLing, Sun DaPeng, Yu DianSi, Shi Biao, Lu YouLin, Zheng HongJian, Lin JinYuan, (2015). “Effects of planting density on the yield and related characters of super-sweet corn cultivar Xiawang”. Acta
Agriculturae Shanghai 2015 Vol,31 No,2 pp,98-101 ref.18.
42. Wen Tian-xiang, Li Gao-ke, Liu Jian-hua, Hu Jian-guang, (2013). “The effect of row spacing on sweet corn variety Yuetian 13”.
PHỤ LỤC THÓNG KÊ
Phụ lục thống kê thí nghiệm 1: Ảnh hưởng của loại và lượng phân hữu cơ vi sinh đến sinh trưởng và năng suất giống bắp ngọt.
Chieu cao cay giai doan tro co (cm)
The GLM Procedure Class Level Tnformation Class Levels Values
REP 3. 123 YTA 4 Al A2 A3 A4 YTB 5 B1 B2 B3 B4 B5
YTAYTB 29_ A1B1 A1B2 A1B3 A1B4 A1B5 A2B1 A2B2 A2B3 A2B4 A2B5 A3B1 A3B2 A3B3 A3B4 A3B5 A4B1 A4B2 A4B3 A4B4 A4B5
Number of Observations Read 69 Number of Observations Used 69
Dependent Variable: CCTC
Sum of
Source DF Squares Mean Square F Value Pr>F Model 27 14845 .35873 549 .82810 9.67 <.0001 Error 32 1819.72821 56.86651
Corrected Total 59 16665 .08694
R-Square Coeff Var Root MSE CCTC Mean 9.890896 6.297224 7.540988 119.7510
Source DF Type I SS Mean Square F Value Pr > F REP 2 3469.694769 1734.847380 30.51 <.0001 YTA 3 69.131393 209.0943798 9.35 9.7876 REP*YTA 6 1979.133427 179.855571 3.16 9.0159 YTB 4 9669. 386690 2415.996673 42.47 <,0001 YTAYTB 12 576.012457 48 .001038 9.84 9.6972
Tests of Hypotheses Using the Type I MS for REP*YTA as an Error Term
Source DF Type I SS Mean Square F Value Pr > FE YTA 3 69.13139333 29.04379778 9.11 9.9592
The GLM Procedure t Tests (LSD) for CCTC
NOTE: This test controls the Type I comparisonwise error rate. not the experimentwise error rate.
Alpha 9.05 Error Degrees of Freedom 32 Error Mean Square 56.86651 Critical Value of t 2.03693 Least Significant Difference 6.2709
Means with the same letter are not significantly different.
t Grouping Mean N YTB A 136.138 12 BS A 131.442 12 B4 B 118.217 12 B3
€ 111.235 12 B2 D 101.724 12 B1 Chieu cao cay giai doan phun rau (cm)
Dependent Variable: CCPR
Sum of
Source DF Squares Mean Square F Value Pr > F Model 27 12679 .26073 469 .60225 6.75 <.0001 Error 32 2225 .93497 69.56047
Corrected Total 59 149@5.19570
R-Square Coeff Var Root MSE CCPR Mean
@.850660 6.577249 8.340292 126.8052
Source DF Type I SS Mean Square F Value Pr > F REP 2 1842.488863 921.244432 13.24 <.0001 YTA 3 73.850685 24.616895 6.35 9.7866 REP*YTA 6 653.6556309 198.9426095 1.57 9.1892 YTB 4 9617.787357 2494.446839 34.57 <.0001 YTAYTB 12 491.478190 40.956516 @.59 9.8348
Tests of Hypotheses Using the Type I MS for REP*YTA as an Error Term
Source DF Type I SS Mean Square F Value Pr oF YTA 3 73.85068590 24.61689500 9.23 9.8751
The GLM Procedure t Tests (LSD) for CCPR
NOTE: This test controls the Type I comparisonwise error rate. not the experimentwise error rate.
Alpha 9.05 Error Degrees of Freedom 32 Error Mean Square 69.56947 Critical Value of t 2.03693 Least Significant Difference 6.9356
Means with the same letter are not significantly different.
t Grouping Mean N YTB A 143.073 12 B5 A 138.438 12 B4 B 125.589 12 B3 C 118.154 12 B2 D 198.772 12 B1 Chieu cao cay giai doan thu hoach (cm)
Dependent Variable: CCTH
Sum of
Source DF Squares Mean Square F Value Pr > F Model 27 13098 .06332 485 .11346 7.24 <,0091 Error =2 2145.37861 67.04398
Corrected Total 59 15243.44193
R-Square Coeff Var Root MSE CCTH Mean 9.859259 6.283626 8.187984 130.3067
Source DF Type I SS Mean Square F Value Pr SF REP 2 1816.700973 908.3509487 13,55 <,0091 YTA 3 81.074387 27.90924796 9.42 9.7517 REP*YTA 6 733 .733013 122.288836 1.82 9.1257 YTB 4 9881.538733 2470.384683 36.85 <,0001
YTAYTB 12 585.0616213 48.751351 9.73 9.7149
Tests of Hypotheses Using the Type I MS for REP*YTA as an Error Term
Source DF Type I SS Mean Square F Value Pr > F YTA 3 81.07438667 27.92479556 9.22 9.8785
The GLM Procedure t Tests (LSD) for CCTH
NOTE: This test controls the Type I comparisonwise error rate. not the experimentwise error rate.
Alpha 9.05 Error Degrees of Freedom 32 Error Mean Square 67 .04308 Critical Value of t 2.03693 Least Significant Difference 6.8089
Means with the same letter are not significantly different.
t Grouping Mean N YTB A 146.996 12 B5 A 142.042 12 B4 B 128.873 12 B3 Cc 121.336 12 B2 D 112.288 12 B1 Chieu cao dong bap (cm)
Dependent Variable: CCDB
Sum of
Source DF Squares Mean Square F Value Pr 3ằ F Model 27 2600. 788520 96.325501 9.36 <.0001 Error 32 329.151413 10.285982
Corrected Total 59 2929 .939933
R-Square Coeff Var Root MSE CCDB Mean
6.371452 3.207177 50.33667 Type I SS Mean Square F Value 947 .352093 473 .676047 46.05 13. 358649 4.452880 9.43 81.108960 13.518160 1,31
1421.612733 355.4063183 34.55 137.3560993 11.446341 1.11
Type I SS 9.887659
Source DF REP 2 YTA 3 REP*YTA 6 YTB 4 YTAYTB 12
Tests of Hypotheses Using the Type I MS Source DF
YTA 3
Alpha
Error Degrees of Freedom 13.35864990
for REP*YTA as an Error Term Mean Square F Value
4.45288000 9.33
The GLM Procedure t Tests (LSD) for CCDB
NOTE: This test controls the Type I comparisonwise error rate. not the experimentwise error rate.
Error Mean Square Critical Value of t
Least Significant Difference
9.05 32 19.28598 2.03693 2.667
Means with the same letter are not significantly different.
t Grouping Mean N YTB A 56.352 12 B5 A 54.933 12 B4 B 50.223 12 B3 Cc 46.825 12 B2 D 43.350 12 B1 Duong kinh than (cm)
Dependent Variable: DKT
Sum of
Source DF Squares Mean Square F Value Model 27 2.96581333 9.07651169 2.44 Error 32 1.00388000 9.03137125
Corrected Total 59 3.06969333
R-Square Coeff Var Root MSE DKT Mean 9.672971 6.630371 9.177119 2.671333
Source DF Type I SS Mean Square F Value REP 2 9.13774333 9.06887167 2.20 YTA 3 9.29433333 9.09811111 3.13 REP*YTA 6 9.21097667 9.03516278 1.12 YTB 4 1.01071000 @.25267750 8.05 YTAYTB 12 @.41205000 @.03433750 1.09
Tests of Hypotheses Using the Type I MS for REP*YTA as an Error Term Source DF Type I SS Mean Square F Value YTA 3 9.29433333 90.09811111 2.79
Alpha
Error Degrees of Freedom The GLM Procedure t Tests (LSD) for DKT
NOTE: This test controls the Type I comparisonwise error rate. not the experimentwise error rate.
Error Mean Square Critical Value of t
Least Significant Difference
9.05 32 9.031371 2.03693 9.1473
Means with the same letter are not significantly different.
+ Grouping A B A B Cc
€ C So la thoi diem 10 NSG
Dependent Variable: SL1@NSG
Source DF Model 27 Error 32
Mean 2.87833 2.75417 2.61333 2.60167 2.50917
Sum of Squares 9.58266667 1.31466667
N YTB 12 BS 12 B4 12 B3 12 B2 12 B1
Mean Square F Value
@.02158025 9.53 9.04108333
PP 3ằ E
<.0001 9.7309 9.2793
<.0001 9.3839
Pr > F 9.8048
Pr ằ F 9.0083
Pr > F 9.1278 9.0393 9.3724 9.0091 9.3972
Pr x E 9.1317
Pr > F 9.9542
Corrected Total 59 1.89733333
R-Square Coeff Var Root MSE SL1@NSG Mean
@. 307098 6.320901 @.202690 3.206667
Source DF Type I SS Mean Square F Value Pr > F REP 2 9.12433333 @.06216667 1552 0.2355 YTA 3 9.02933333 9.09977778 9.24 9.8692 REP*YTA 6 9.02766667 90.00461111 9.11 9.9943 YTB 4 9.17733333 9.04433333 1.08 9.3832 YTAYTB 12 @.22490000 9.01866667 9.45 9.9265
Tests of Hypotheses Using the Type I MS for REP*YTA as an Error Term
Source DF Type T SS Mean Square F Value Pr>F YTA 3 9.02933333 9.00977778 2.12 9.1990
So la thoi diem 20 NSG Dependent Variable: SL2@NSG
Sum of
Source DF Squares Mean Square F Value Pr 3 Model 27 3. 76183333 9.13932716 2.73 9.0036 Error 32 1.63466667 09.05108333
Corrected Total 59 5.39659990
R-Square Coeff Var Root MSE SL2@NSG Mean
@.697088 3.821069 @.226016 5.915000
Source DF Type I SS Mean Square F Value Pr > F REP 2 @.97300000 @.48650000 ch”) 9.0096
YTA 3 9.24716667 09.08238889 1.61 9.2057 REP*YTA 6 9.91233333 09.15205556 2.98 9.0299 YTB 4 9.79733333 09.19933333 3.90 9.0198
YTAYTB 12 @.83200000 @.06933333 1.36 9.2367
Tests of Hypotheses Using the Type I MS for REP*YTA as an Error Term
Source DF Type I SS Mean Square F Value Pr > F YTA 3 9.24716667 90.08238889 9.54 9.6712
The GLM Procedure t Tests (LSD) for SL2ðNSG
NOTE: This test controls the Type I comparisonwise error rate. not the experimentwise error rate.
Alpha 9.05 Error Degrees of Freedom 32 Error Mean Square 9.051083 Critical Value of t 2.03693 Least Significant Difference 0.1879
Means with the same letter are not significantly different.
t Grouping Mean N YTB A 6.09167 12 BS B A 6.00833 12 B4 B c 5.85833 12 B3 B € 5.82500 12 B1 Cc 5.79167 12 B2 So la thoi diem 30 NSG
Dependent Variable: SL3@NSG
Sum of
Source DF Squares Mean Square F Value Pr > E Model 27 3.10850000 9.11512963 1.43 9.1646 Error 32 2.57333333 9.08941667
Corrected Total 59 5 .68183333
R-Square Coeff Var Root MSE SL3@NSG Mean 9.547095 3.717435 9.283578 7.628333
Source DF Type I SS Mean Square F Value Pr 3 F REP 2 9.73733333 9.36866667 4.58 9.0178 YTA 3 90.30583333 @.10194444 1527 9.3020 REP*YTA 6 9.20266667 90.03377778 9.42 9.8691 YTB 4 9.78190090 @.19525000 2.43 9.0680 YTAYTB 12 1.08166667 @.09013889 1.12 9.3781
Tests of Hypotheses Using the Type I MS
So la thoi diem 40 NSG Dependent Variable: SL4@NSG
for REP*YTA as an Error Term Source DF Type I SS Mean Square F Value YTA 3 @. 30583333 @.10194444 3.02
Sum of
Source DF Squares Mean Square F Value Model 27 4.07000000 @.15074074 2.81 Error 32 1..71733333 @.05366667
Corrected Total 59 5:..78733333
R-Square Coeff Var Root MSE SL4@NSG Mean 9.703260 2.655644 9.231661 8.723333 Source DF Type T SS Mean Square F Value REP 2 1.18033333 9.59016667 11.00 YTA 3 9.19533333 @.06511111 1.21 REP*YTA 6 9.79566667 9.13261111 2.47 YTB 4 9.81900090 @.20475000 3.82 YTAYTB 12 1.07966667 9.08997222 1.68
Tests of Hypotheses Using the Type I MS Source DF Type I SS YTA 3 9.19533333
for REP*YTA as an Error Term
The GLM Procedure t Tests (LSD) for
Alpha
Error Degrees of Freedom Error Mean Square
Critical Value of t
Least Significant Difference
Mean Square F Value
@.06511111 @.49
SL4@NSG
9.05 32 9.053667 2.03693 9.1926
Means with the same letter are not significantly different.
So la thoi diem 50 NSG Dependent Variable: SL5@NSG
t Grouping Mean N YTB A 8.83333 12 B5 A 8.83333 12 B1 B A 8.78333 12 B3 B € 8.60833 12 B4
€ 8.55833 12 B2
Sum of
Source DF Squares Mean Square F Value Model 37 7.12316667 9.26382099 4.35 Error 32 1.93866667 @.06058333
Corrected Total 59 9 .06183333
R-Square Coeff Var Root MSE SLS@NSG Mean
@.786062 2.116699 9.246137 11.62833
Source DF Type I SS Mean Square F Value REP 2 9.12133333 9.06966667 1.00 YTA 3 9.51383333 9.17127778 2.83 REP*YTA 6 2.32666667 9.38777778 6.40 YTB 4 9.77266667 9.19316667 3:19) YTAYTB 12 3.38866667 9.28238889 4.66
Tests of Hypotheses Using the Type I MS Source DF Type I SS YTA 3 @.51383333
for REP*YTA as an Error Term
The GLM Procedure t Tests (LSD) for
Alpha
Error Degrees of Freedom Error Mean Square
Critical Value of t
Least Significant Difference
Mean Square F Value
@.17127778 9.44
SL5ỉNSG
9.05 32 9.060583 2.03693 9.2947
PP 3 E 9.1158
Pr>F 9.0029
Pr š 9.0092 9.3208 9.0446 9.0120 9.1196
Pr > £ 9.7013
NOTE: This test controls the Type I comparisonwise error rate. not the experimentwise error rate.
Pr > F
<. 0001
Pr SF 9.3786 9.0541 9.0002 9.0269 9.0002
Pr > F 9.7317
NOTE: This test controls the Type I comparisonwise error rate. not the experimentwise error rate.
Means with the same letter are not significantly different.
+ Grouping Mean N YTB A 11.7667 12 B1 B A 11.7500 12 B2 B A C 11.6000 12 B5
B iC 11.5500 12 B3
C 11.4750 12 B4
The GLM Procedure
Duncan's Multiple Range Test for SL5ðNSG
NOTE: This test controls the Type I comparisonwise error rate. not the experimentwise error rate.
Alpha 9.05 Error Degrees of Freedom 32 Error Mean Square 9.060583
Means with the same letter are not significantly different.
Duncan Grouping Mean N YTAYTB A 12.0667 3 A4 B2 B A 11.8667 3 A2 B1 B A 11.8667 3 A4 B4 B A 11.8333 3 A4 B1 B A 11.8333 3 A3 B4 B A Cc 11.8000 3 A2 B3 B D A ie 11.7667 3 Al B1 B D A Cc 11.7667 3 A3 B5 B D A € 11.7333 3 A2 B2 B D A Cc 11.7000 3 A4 B5 B D A € 11.7000 3 Al B3 B D A € 11.6333 3 A3 B2 B D A G 11.6000 3 Al B5 B D A € 11.6000 3 A3 B1 B D ia 11.5667 3 Al B2 B D ie 11.4667 3 Al B4 B D G 11.4000 3 A3 B3 D Cc 11.3333 3 A2 B5 D 11.3000 3 A4 B3 E 10.7333 3 A2 B4 So la thoi diem 60 NSG
Dependent Variable: SL6@NSG
Sum of
Source DF Squares Mean Square F Value Pr > FE Model 27 9.88983333 9.03295679 1.41 9.1738 Error 32 9.74666667 9.02333333
Corrected Total 59 1.63650000
R-Square Coeff Var Root MSE SL6@NSG Mean 9.543742 1.250532 9.152753 12.21599
Source DF Type I SS Mean Square F Value Pr > F REP 2 @.19600000 9.09809009 4.20 9.9249 YTA 3 @.13650000 9.04559099 1.95 9.1414 REP*YTA 6 9.30499900 09.05966667 2/12 9.0720 YTB 4 90.03733333 9.00933333 9.40 9.8071 YTAYTB 12 9.21690900 9.01890900 9.77 9.6742
Tests of Hypotheses Using the Type I MS for REP*YTA as an Error Term
Source DF Type I SS Mean Square F Value Pr > F YTA 3 @.13650000 @.04550000 9.90 9.4949 Dien tich la (dm?)
Dependent Variable: DTL
Sum of
Source DF Squares Mean Square F Value Pr 3 F Model 27 1281.524005 47 .463852 2.89 9.0023 Error 32 525.1100953 16.409689
Corrected Total 59 1896.634058
R-Square Coeff Var Root MSE DTL Mean 9.799343 8.207515 4.050887 49.35583
Source DF Type I SS Mean Square F Value Pr > F REP 2 36.6413233 18. 3206617 1.12 9.3399
YTA 3 82.0716183 27.35720961 1.67 9.1937
REP*YTA 6 468.9029567 78.15094928 4.76 9.0014 YTB 4 637.7195598 159.4298875 9.72 <.0001 YTAYTB 12 56.1885567 4.6823797 9.29 9.9877
Tests of Hypotheses Using the Type I MS for REP*YTA as an Error Term
Source DF Type I SS Mean Square F Value Pr > F YTA 3 82.07161833 27.35720611 9.35 9.7919
The GLM Procedure t Tests (LSD) for DTL
NOTE: This test controls the Type I comparisonwise error rate. not the experimentwise error rate.
Alpha 9.05 Error Degrees of Freedom 32 Error Mean Square 16.49969 Critical Value of t 2.03693 Least Significant Difference 3.3686
Means with the same letter are not significantly different.
t Grouping Mean N YTB A 55112 12 BS B 50.376 12 B4 c B 48.569 12 B3 c 46.819 12 B2
L6 45.903 12 B1
Chi so dien tich la (m? la/m? dat) Dependent Variable: LAI
Sum of
Source DF Squares Mean Square F Value Pr š F Model 27 2.53431167 9.09386340 2298 9.0022 Error 32 1.03530667 9.03235333
Corrected Total 59 3.56961833
R-Square Coeff Var Root MSE LAT Mean 9.709967 8.198906 9.179879 2.193833
Source DF Type T SS Mean Square F Value Pr > F REP 2 9.07397333 9.03698667 1.14 9.3315 YTA 3 9.16425833 9.05475278 1569) 9.1883 REP*YTA 6 9.92698667 9.15449778 4.78 9.0014 YTB 4 11.25637667 9.31499417 8,1 <,0901 YTAYTB 12 9.11271667 9.00939306 9.29 9.9867
Tests of Hypotheses Using the Type I MS for REP*YTA as an Error Term
Source DF Type I SS Mean Square F Value Pr > F YTA 3 9.16425833 9.05475278 9.35 9.7882
The GLM Procedure t Tests (LSD) for LAT
NOTE: This test controls the Type I comparisonwise error rate. not the experimentwise error rate.
Alpha 9.05 Error Degrees of Freedom 32 Error Mean Square 9.032353 Critical Value of t 2.03693 Least Significant Difference 0.1496
Means with the same letter are not significantly different.
t Grouping Mean N YTB A 2.44917 12 B5 B 2.23833 12 B4 ie B 2.16083 12 B3 ie 2.08083 12 B2 Cc 2.04000 12 B1 Chi so Diep luc to
Dependent Variable: SPAD
Sum of
Source DF Squares Mean Square F Value Pr > F Model 27 214.5649600 7.9468504 9.86 9.6505 Error 32 294.9850133 9.2182817
Corrected Total 59 599.5499733
R-Square Coeff Var Root MSE SPAD Mean
@.421087 5.480701 3.036162 55 .39733
Source DF Type I SS Mean Square F Value Pr > F REP 2 27.53284333 13.76642167 1.49 9.2398 YTA 3 31.43399333 19.47769778 1.14 9.3491 REP*YTA 6 14.07707667 2.34617944 9.25 9.9538 YTB 4 51.90547333 12.97636833 1.41 9.2538 YTAYTB 12 89.61647333 7 .46803944 9.81 9.6384
Tests of Hypotheses Using the Type I MS for REP*YTA as an Error Term
Source DF Type I SS Mean Square F Value Pr id E YTA 8 31.43309333 19.47769778 4.47 9.0567
Chieu dai bap (cm) Dependent Variable: CDB
Sum of
Source DF Squares Mean Square F Value Pr > F Model 27 207 . 8647533 7.6986946 21.23 <.0001 Error 32 11.6066400 9.3627975
Corrected Total 59 219.4713933
R-Square Coeff Var Root MSE CDB Mean 9.947115 3.095828 @.602252 19.45367
Source DF Type I Ss Mean Square F Value Pr > F REP 2 82.37196333 41.18598167 113.55 <.0001 YTA 3 23.92254000 7 .97418000 21.99 <.0001 REP*YTA 6 48.90773900 8.15128833 22.47 <.0001 YTB 4 47.77579333 11.94394833 32.93 <.0001 YTAYTB 12 4.88672667 @.40722722 1.12 9.3768
Tests of Hypotheses Using the Type I MS for REP*YTA as an Error Term
Source DF Type I SS Mean Square F Value Pr > F YTA 3 23 .92254000 7 .97418000 9.98 9.4629
The GLM Procedure t Tests (LSD) for CDB
NOTE: This test controls the Type I comparisonwise error rate. not the experimentwise error rate.
Alpha 9.05 Error Degrees of Freedom 32 Error Mean Square 9.362798 Critical Value of t 2.03693 Least Significant Difference 0.5008
Means with the same letter are not significantly different.
t Grouping Mean N YTB A 29.5159 12 B5 A 20.4225 12 B4 B 19.1608 12 B3 B 18.9858 12 B2 ể 18.1842 12 B1
Duong kinh bap (cm) Dependent Variable: DKB
Sum of
Source DF Squares Mean Square F Value Pr>F Model 27 2.46382667 9.09125284 1.28 9.2509 Error 32 22.28353333 9.07136942
Corrected Total 59 4.74736000
R-Square Coeff Var Root MSE DKB Mean 9.518989 7.649877 9.267134 3.492000
Source DF Type I SS Mean Square F Value Pr > F REP 2 @.07353000 9.03676590 9.52 9.6923 YTA 3 @.02000000 9.00666667 9.09 9.9631 REP*YTA 6 @.35847000 @.05974500 9.84 9.5594 YTB 4 1.35299333 9.33824833 4.74 9.0941 YTAYTB 12 9.65883333 9.05490278 9.77 9.6761
Tests of Hypotheses Using the Type I MS for REP*YTA as an Error Term
Source DF Type I SS Mean Square F Value Pr > F YTA 3 @.02000000 @.00666667 9.11 9.9592
The GLM Procedure t Tests (LSD) for DKB
NOTE: This test controls the Type I comparisonwise error rate. not the experimentwise error rate.
Alpha 9.05 Error Degrees of Freedom 32 Error Mean Square 9.07136 Critical Value of t 2.03693 Least Significant Difference 0.2221
Means with the same letter are not significantly different.
t Grouping Mean N YTB A 3.6898 12 B4 A 3.6275 12 B5 B A 3.4942 12 B3 B 3.3808 12 B2 B 3.2767 12 B1 So hang hat tren bap (hat/hang)
Dependent Variable: HHB
Sum of
Source DF Squares Mean Square F Value Pe 3 E Model 27 18.77866667 9.69550617 9.96 9.5370 Error 32 23.13966667 9.72283333
Corrected Total 59 41.90933333
R-Square Coeff Var Root MSE HHB Mean 0.448078 7.213202 9.859196 11.78667
Source DF Type I SS Mean Square F Value Pr =F REP 2 9.40933333 9.29466667 9.28 9.7553 YTA 3 2.65966667 9.88355556 1.22 9.3176 REP*YTA 6 9.71333333 1.61888889 2.24 9.0645 YTB 4 2.89690990 9.72400000 1.00 9.4211 YTAYTB 12 3.19933333 9.25911111 9.36 9.9689
Tests of Hypotheses Using the Type I MS for REP*YTA as an Error Term
Source DF Type I SS Mean Square F Value Pro F YTA 3 2.65066667 9.88355556 9.55 9.6689
So hat bap tren hang (hat/hang) Dependent Variable: HBH
Sum of
Source DF Squares Mean Square F Value Pr>F Model 37 149.6666667 5.5432099 2.23 9.0153 Error 32 79.4466667 2.4827083
Corrected Total 59 229).1133333)
R-Square Coeff Var Root MSE HBH Mean 9.653243 7.317312 1.575661 21.53333
Source DF Type I SS Mean Square F Value Pr ằ F REP 2 7 .24633333 3.62316667 1.46 9.2474 YTA 3 11.53733333 3.84577778 1.55 9.2209 REP*YTA 6 77.25366667 12.87561111 5.19 9.0098 YTB 4 24.62833333 6.15708333 2.48 9.0636 YTAYTB 12 29.00109900 2.41675000 9.97 9.4930
Tests of Hypotheses Using the Type I MS for REP*YTA as an Error Term
Source DF Type I Ss Mean Square F Value Pr > F YTA 3 11.53733333 3.84577778 9.39 9.8256
Khoi luong 1999 hat tuoi (g) Dependent Variable: P1000
Sum of
Source DF Squares Mean Square F Value Pr > F Model 27 2833.030872 194.9270969 2,33 9.0115
Error 32 1442.101827 45.065682 Corrected Total 59 4275.132698
R-Square Coeff Var Root MSE P1990 Mean