3.2 Reactions with Alkenes (Mizoroki–Heck Reaction)
3.2.10 Amino Heck Reactions of Oximes
Narasaka found that an N—O bond in oxime undergoes oxidative addition to Pd(0). Based on this reaction, his group developed a new synthetic method of N- heterocycles. Oxidative addition of some unsaturated ketone oximes466generates 467, which undergoes intramolecular aminopalladation. Particularly, facile oxida- tive addition ofO-pentafluorobenzoyloxime 468occurs to provide470. When the oxime of γ , δ-unsaturated ketone 468 is treated with Pd(PPh3)4 in the presence of a base in DMF, intramolecular Heck-type amination of alkene takes place to give rise to the the pyrrole469. The reaction can be understood by sequences of oxidative addition to give alkylideneaminopalladium 470, double bond insertion to form the cyclized intermediate 471, β-H elimination to form the cyclic imine 472, and double bond isomerization [178].
+ Pd(0)
466 467
product R
N OCOAr
R
N Pd OCOAr intramoleculkar aminopalladation
Ph(CH2)2
N HN
Ph(CH2)2
Me OCOC6F5
Ph(CH2)2 N Pd
468
OCOC6F5
469
N Ph(CH2)2
Pd-X
N Ph(CH2)2
470 471 472
Pd(0)
DMF, 80 °C, 81%
Pd(PPh3)4, Et3N
Pyridines and quinolines are similarly prepared. The pyrrole 474 was obtained by 5-exo cyclization of 3-methoxy-1-phenyl-4-penten-1-one (E)-O-pentarfluoro- benzoyloxime 473 under usual conditions. On the other hand, 2-phenylpyridine (475) was obtained by 6-endo cyclization as the main product in the presence of n-Bu4NCl. Isoquinoline 477 was prepared in 77 % yield by 6-exo cyclization of the oxime476 [179].
in the presence of n-Bu4NCl
477 Pd(PPh3)4, Et3N
DMF, 80 °C
+
11% 58%
Pd(PPh3)4, Et3N,n-Bu4NCl,
69% 7%
DMF, 80 °C, 77%
473 474 475
476 Ph
N OMe
OCOC6F5
HN Ph
Me
N Ph OMe
N Me
OCOC6F5
N Me
Me
Substituted azaazulene 479 was prepared from cycloheptatrienylmethyl ketone O-pentafluorobenzyloxime478by Pd-P(t-Bu)3-catalyzed cyclization, followed by treatment with MnO2 [180]. As observed in the Heck reaction, the domino insertion of olefins occurred to produce the polycyclic imine481when the trienyloxime480 was subjected to the Pd-catalyzed reaction [181].
N
OCOC6F5 Ph
2. MnO2, CH2Cl2
reflux, 78%
N Ph
478
1. Pd2(dba)3, P(t-Bu)3
Et3N, MS 4A, DMF,
479
480 481
Ph
N OCOC6F5
Ph N Pd(PPh3)4, Et3N
DMF, MS 4A 110°C, 74%
As a related reaction, an N-Cl bond in unsaturated N-chloroamine undergoes oxidative addition to Pd(0) and cyclization. In the treatment of N-chloro-2,2- dimethyl-4-pentenylamine482with Pd(PPh3)4in the absence of a base, oxidative
addition is followed by double bond insertion to give the alkylpalladium chlo- ride 484, which is converted to the 2-chloromethylpyrroridine 485 by reductive elimination, without undergoing β-H elimination in the absence of a base. Then isomerization of the less stable 485 to the more stable 3-chloropiperidine 483 occurs. The presence of 2,2-dimethyl groups is important for the smooth reaction;
the yield was low without them [182].
Pd(PPh3)4, THF rt, 85%
482
484 485
483 N
Bu Cl
N Bu Pd Cl
N Bu Cl-Pd
N Bu Cl
N
Cl Bu
References
1. Review: A. E. Littke and G. C. Fu,Angew. Chem. Int. Ed.,41, 4176 (2002).
2. I. Moritani and Y. Fujiwara, Tetrahedron Lett., 1119 (1967); R. F. Heck, J. Am.
Chem. Soc.,90, 5518, 5546 – (1968).
3. P. Fitton, M. P. Johnson, and J. E. McKeon, J. Chem. Soc., Chem. Commun., 6 (1968).
4. T. Mizoroki, K. Mori, and A. Ozaki, Bull. Chem. Soc. Jpn., 44, 581 (1971); 46, 1505 (1973).
5. R. F. Heck and J. P. Nolley, Jr,J. Org. Chem.,37, 2320 (1972); H. A. Dieck and R. F. Heck,J. Am. Chem. Soc.,96, 1133 (1974);J. Org. Chem.,40, 1083 (1975).
6. (a) A. de Meijere and F. E. Meyer,Angew. Chem. Int. Ed. Engl.,33, 2379 (1994); in Metal-catalyzed Cross-coupling Reactions, Eds F. Diederich and P. J. Stang, Wiley- VCH, New York, 1998, p. 99; (b) A. de Meijere and S. Br¨ase, inTransition Metal Catalyzed Reactions, Eds S.-I. Murahashi and S. G. Davies, Blackwell Science, Oxford, 1999, p. 99; J. Organomet. Chem., 576, 88 (1999); (c) S. Cacchi, J.
Organomet. Chem., 576, 42 (1999); (d) R. C. Larock, J. Organomet. Chem., 576, 111 (1999); (e) R. Grigg and V. Sridharan, J. Organomet. Chem., 576, 65 (1999); in Transition Metal Catalyzed Reactions, Eds S.-I. Murahashi and S. G. Davies, Blackwell Science, Oxford, 1999, p. 81; (f) E. Negishi, C. Coperet, S. Ma, S. Y. Liou, and F. Liu, Chem. Rev.,96, 365 (1996); (g) R. F. Heck, Org.
React., 27, 345 (1982); Adv. Catal., 26, 323 (1977); Acc. Chem. Res., 12, 146 (1979);Comprehensive Organic Synthesis,4, 833 (1991); (h) I. P. Beletskaya and A. V. Cheprakov, Chem. Rev., 100, 3009 (2000); in Transition Metal Catalyzed Reactions, Eds S.-I. Murahashi and S. G. Davies, Blackwell Science, Oxford, 1999, p. 29; (i) N. J. Whitecomb, K. K. Hii, and S. E. Gibson, Tetrahedron, 57, 7449 (2001).
7. A. F. Littke and G. C. Fu,J. Am. Chem. Soc.,123, 6989 (2001).
8. M. Inoue, H. Furuyama, H. Sakazaki, and M. Hirama,Org. Lett.,3, 2863 (2001).
9. S. Lin and S. J. Danishefsky,Angew. Chem. Int. Ed.,40, 1967 (2001).
10. S. A. Ahmad-Junan, P. C. Amos, and D. A. Whiting, J. Chem. Soc., Perkin Trans.
I, 539 (1992).
11. C. B. Ziegler and R. F. Heck,J. Org. Chem.,43, 2941 (1978).
12. W. A. Herrmann, C. Brossmer, K. Ofele, C. P. Reisinger, T. Priermerer, M. Beller, and H. Fischer, Angew. Chem., Int. Ed. Engl., 34, 1844 (1995); W. A. Herrmann, V. P. W. B¨ohm and C. P. Reisinger,J. Organomet. Chem.,576, 23 (1999).
13. F. Miyazaki, K. Yamaguchi, and M. Shibasaki,Tetrahedron Lett.,40, 7379 (1999).
14. M. Ohff, A. Ohff, M. E. van der Boom, and D. Milstein, J. Am. Chem. Soc.,119, 11687 (1997).
15. M. Feuerstein, H. Doucet, and M. Santelli,Synlett, 1980 (2001).
16. J. P. Genet, E. Blart, and M. Savignac,Synlett, 715 (1992).
17. J. C. Namyslo and D. E. Kaufman,Synlett, 114 (1999).
18. Review: T. Welton,Chem. Rev.,99, 2071 (1999).
19. C. Yang and S. P. Nolan,Synlett, 1539 (2001).
20. M. B. Andrus, C. Song, and J. Zhang,Org. Lett.,4, 2079 (2002).
21. C. Yang, H. M. Lee, and S. P. Nolan,Org. Lett.,3, 1511 (2001).
22. R. G. Heidenreich, K. K¨ohler, J. G. E. Krauter, and J. Pietsch,Synlett, 1118 (2002).
22a. S. Chandrasekhar, Ch. Narsihmulu, S. S. Sultana, and N. R. Reddy, Org. Lett., 4, 4399 (2002).
23. H. Hagiwara, Y. Shimizu, T. Hoshi, T. Suzuki, M. Ando, K. Ohkubo, and C. Yoko- yama,Tetrahedron Lett.,42, 4349 (2001).
24. K. S. A. Vallin, P. Emilsson, M. Larhed, and A. Hallberg,J. Org. Chem.,67, 6243 (2002).
25. R. C. Larock, E. K. Yum, and M. D. Refvik,J. Org. Chem.,63, 7652 (1998).
26. C. G¨urtler and S. L. Buchwald,Chem. Eur. J.,5, 3107 (1999).
27. M. A. Campo and R. C. Larock,J. Am. Chem. Soc.,124, 14326 (2002).
28. G. Karig, M. T. Moon, N. Thasana, and T. Gallagher,Org. Lett.,4, 3115 (2002).
29. M. T. Reetz, E. Westermann, R. Lohmer, and G. Lohmer, Tetrahedron Lett., 39, 8449 (1998).
30. M. T. Reetz, G. Lohmer, and R. Schwickardi,Angew. Chem. Int. Ed.,37, 481 (1998).
31. T. Jeffery,J. Chem. Soc., Chem. Commun., 1287 (1984);Tetrahedron Lett.,26, 2667 (1985);35, 3051 (1994).
32. T. Jeffery,Tetrahedron,52, 10113 (1996).
33. M. T. Reetz and E. Westermann,Angew. Chem. Int. Ed.,39, 165 (2000).
34. A. Hallberg and C. Westerlund,Chem. Lett., 1993 (1982); K. Karabelas and A. Hall- berg, J. Org. Chem., 51, 5286 (1986); K. Kikukawa, K. Ikenaga, F. Wada, and T. Matsuda,Chem. Lett., 1337 (1983);J. Chem. Soc. Perkin Trans. I, 1959 (1986).
35. T. Jeffery,Tetrahedron Lett.,40, 1673 (1999).
36. T. Jeffery and M. David,Tetrahedron Lett.,39, 5751 (1998).
37. P. H. Dussault and C. T. Eary,J. Am. Chem. Soc.,120, 7133 (1998).
38. J. J. Li,J. Org. Chem.,64, 8425 (1999).
39. V. B. Birman and V. H. Rawal,J. Org. Chem.,63, 9146 (1998).
40. K. Voigt, U. Schick, F. E. Meyer, and A. de Meijere,Synlett, 189 (1994); S. Hillers, S. Sartori, and O. Reiser,J. Am. Chem. Soc.,118, 2087 (1996).
41. L. F. Tietze, O. Burkhardt, and M. Henrich,Liebig Ann. Recl.,7, 1407 (1997).
42. A. Diaz-Ortiz, P. Prieto, and E. Vazquez,Synlett, 269 (1997).
43. T. Flessner, V. Ludwig, H. Siebeneicher, and E. Winterfeldt,Synthesis, 1373 (2002).
44. K. Kikukawa and T. Matsuda, Chem. Lett., 159 (1977); K. Kikukawa, K. Nagira, F. Wada, and T. Matsuda,Tetrahedron,37, 31 (1981); K. Kikukawa, K. Maemura, Y. Kiseki, F. Wada, T. Matsuda, and C. S. Giam,J. Org. Chem.,46, 4885 (1981).
45. M. Beller and K. K¨uhlen,Synlett, 441 (1995); M. Beller, H. Fischer, and K. K ¨uhlen, Tetrahedron Lett.,35, 8773 (1994).
46. S. Sengupta and S. K. Sadhukhan,Tetrahedron Lett.,39, 715 (1998).
47. H. Brunner, N. Le Cousturier de Courcy, and J. P. Genet, Tetrahedron Lett., 40, 4815 (1999).
48. H. Brunner, N. Le Cousturier de Courcy, and J. P. Genet,Synlett, 201 (2000).
49. J. Masllorens, M. Moreno-Manas, A. Pla-Quintana, and A. Roglans,Org. Lett., 5, 1559 (2003).
50. A. F. Littke and G. C. Fu,J. Org. Chem.,64, 10 (1999).
51. J. P. Stambuli, S. R. Stauffer, K. H. Shaughnessy, and J. F. Hartwig,J. Am. Chem.
Soc.,123, 2677 (2001).
52. Y. Zhang and E. Negishi,J. Am. Chem. Soc.,111, 3454 (1989).
53. J. Tsuji and K. Ohno, J. Am. Chem. Soc.,90, 94 (1968).
54. H. U. Blaser and A. Spencer, J. Organomet. Chem., 233, 267 (1982); A. Spencer, J. Organomet. Chem.,240, 209 (1982);265, 323 (1984).
55. M. Miura, H. Hashimoto, K. Itoh, and M. Nomura,J. Chem. Soc., Perkin Trans. I, 2207 (1990).
56. M. S. Stephan, A. J. J. M. Teunissen, G. K. M. Verzijl, and J. G. de Vries,Angew.
Chem. Int. Ed.,37, 662 (1998).
57. A. J. Carmichael, M. J. Earle, J. D. Holbrey, P. B. McCormac, and K. R. Seddon, Org. Lett.,1, 997 (1999).
58. A. G. Myers, D. Tanaka, and M. R. Mannion,J. Am. Chem. Soc.,124, 11250 (2002).
59. L. J. Goossen and J. Paetzold,Angew. Chem. Int. Ed.,41, 1237 (2002).
60. S. K. Meegalla, N. J. Taylor, and R. Rodrigo,J. Org. Chem.,57, 2422 (1992).
61. J. Masllorens, M. Moreno-Manas, A. Pla-Quintana, R. Pleixats, and A. Roglans,Syn- thesis, 1903 (2002).
62. A. Arcadi, S. Cacchi, G. Fabrizi, F. Marinelli, and P. Pace,Synlett, 568 (1996).
63. C. M. Andersson and A. Hallberg,J. Org. Chem.,54, 1502 (1989).
64. J. B. Shotwell, E. S. Krygowski, J. Hines, B. Koh, E. W. D. Huntsman, H. W. Choi, J. S. Schneekloth, J. L. Wood, and C. M. Crews,Org. Lett.,4, 3087 (2002).
65. A. Bengtson, M. Larhed, and A. Hallberg,J. Org. Chem.,67, 5854 (2002).
66. G. Battistuzzi, S. Cacchi, and G. Fabrizi, Org. Lett., 5, 777 (2003). Synlett, 1133 (2003).
67. N. I. Houpis, B. W. Choi, J. P. Reider, A. Molina, R. H. Churchill, E. J. Lynch, and P. R. Volante,Tetrahedron Lett.,35, 4571 (1995).
68. J. B. Melpolder and R. F. Heck, J. Org. Chem.,41, 265 (1976); S. A. Buntin and R. F. Heck,Org. Syn. Coll.,7, 361 (1990).
69. A. J. Chalk and S. A. Magennis,J. Org. Chem.,41, 1206 (1976).
70. B. M. Trost, J. R. Corte, and M. S. Gudiksen, Angew. Chem. Int. Ed., 38, 3662 (1999).
71. D. Basavaiah and K. Muthukumaram,Tetrahedron,54, 4943 (1998).
72. S. Cacchi, P. G. Ciattini, E. Morera, and P. Pace, Synlett, 545 (1996).
73. R. C. Larock, W. Y. Leung, and S. Stolz-Dunn,Tetrahedron Lett.,30, 6629 (1989);
Y. Wang, X. Dong, and R. C. Larock,J. Org. Chem.,68, 3090 (2003).
74. K. Bedjeguelal, V. Bolitt, and D. Sinou,Synlett, 762 (1999).
75. J. F. Nguefack, V. Bolitt, and D. Sinou,J. Org. Chem.,62, 1341 (1997).
76. J. F. Nguefack, V. Bolitt, and D. Sinou,Tetrahedron Lett.,37, 59 (1996).
77. G. K. Feiedstad and B. P. Brancharud,Tetrahedron Lett.,36, 7047 (1995);38, 5933 (1997).
78. H. Hagiwara, Y. Ada, K. Morohushi, T. Suzuki, M. Ando, and N. Ito,Tetrahedron Lett.,39, 4055 (1998).
79. D. Sole, J. Bonjoch, S. Garcia-Rubio, E. Peidro, and J. Bosch, Angew. Chem. Int.
Ed.,38, 395 (1999).
80. G. Hirai, Y. Koizumi, S. M. Moharram, H. Oguri, and M. Hirama, Org. Lett., 4, 1627 (2002).
81. H. N¨uske, M. Noltenmeyer, and A. de Meijere, Angew. Chem. Int. Ed., 40, 3411 (2001), A. de Meijere, H. N¨uske, M. Es-Sayed, T. Labahn, M. Schroen, and S. Br¨ase,Angew. Chem. Int. Ed.,38, 3669 (1999).
82. C. Coperet and E. Negishi,Org. Lett.,1, 165 (1999).
83. R. Grigg and V. Sridharan,Tetrahedron Lett.,34, 7471 (1993).
84. G. Balme and D. Bouyssi,Tetrahedron,50, 403 (1994).
85. P. Fratwell, R. Grigg, J. M. Sansano, V. Sridharan, S. Sukirthalingam, D. Wilson, and J. Redpath,Tetrahedron,56, 7525 (2000).
86. W. Lee, K. S. Oh, K. S. Kim, and K. H. Ahn,Org. Lett.,2, 1213 (2000); C. H. Oh, H. R. Sung, S. J. Park, and K. H. Ahn,J. Org. Chem.,67, 7155 (2002).
87. K. M. Shaulis, B. L. Hoskin, J. R. Townsend, F. E. Goodson, C. D. Incarvito, and A. L. Rheingold,J. Org. Chem.,67, 5860 (2002).
88. B. Burns, R. Grigg, P. Ratananukul, V. Sridharan, P. Stevenson, and T. Worakun, Tetrahedron Lett.,29, 4329 (1988).
89. R. Grigg, V. Sridharan, P. Stevenson, S. Sukirthalingam, and T. Worakun,Tetrahe- dron,46, 4003 (1990).
90. S. P. Maddaford, N. G. Andersen, W. A. Cristofoli, and B. A. Keay,J. Am. Chem.
Soc.,118, 10766 (1996).
91. D. Sc. Black, P. A. Keller, and N. Kumar,Tetrahedron,48, 7601 (1992).
92. A. Bombrun and O. Sageot,Tetrahedron Lett.,38, 1057 (1997).
93. B. Burns, R. Grigg, V. Santhakumar, V. Sridharan, P. Stevenson, and T. Worakun, Tetrahedron,48, 7297 (1992).
94. S. E. Gibson, N. Guillo, R. J. Middleton, A. Thuilliez, and M. J. Tozer, J. Chem.
Soc. Perkin Trans. I, 447 (1997).
95. A. Brown, R. Grigg, T. Ravishankar, and M. Thornton-Pett,Tetrahedron Lett.,35, 2753 (1994).
96. R. Grigg, P. Kennewell, A. Teasdale, and V. Sridharan,Tetrahedron Lett.,34, 153 (1993).
97. N. E. Carpenter, D. J. Kucera, and L. E. Overman,J. Org. Chem.,54, 5846 (1989).
98. C. Pilger, B. Westermann, U. Florke, and G. Fels,Synlett, 1163 (2000).
99. P. J. Parsons, M. D. Charles, D. M. Harvey, L. R. Sumoreeah, A. Shell, G. Spoore, A. L. Gill, and S. Smith,Tetrahedron Lett.,42, 2209 (2001).
100. L. F. Tietze, T. N¨obel, and M. Spescha, J. Am. Chem. Soc.,120, 8971 (1998).
101. D. L. Comins and J. M. Nolan,Org. Lett.,3, 4255 (2001).
102. J. Hynes, Jr., L. E. Overman, T. Nasser, and P. V. Rucker, Tetrahedron Lett.,39, 4647 (1998).
103. C. Y. Hong, L. E. Overman, and A. Romero,Tetrahedron Lett.,38, 8439 (1997).
104. A. Madin, C. J. O’Donnell, T. Oh, D. W. Old, L. E. Overman, and M. J. Sharp, Angew. Chem. Int. Ed.,38, 2934 (1999).
105. F. W. Ng, H. Lin, and S. L. Danishefsky,J. Am. Chem. Soc.,124, 9812 (2002).
106. V. H. Rawal and S. Iwasa,J. Org. Chem.,59, 2685 (1994).
107. M. J. Eichberg, R. L. Dorta, K. Lamottke, and K. P. C. Vollhardt,Org. Lett.,2, 2479 (2000); M. J. Eichberg, R. L. Dorta, D. B. Grotjahn, K. Lamottke, M. Schmidt, and K. P. C. Vollhardt,J. Am. Chem. Soc.,123, 9324 (2001).
108. M. Nakanishi and M. Mori, Angew. Chem. Int. Ed.,41, 1237 (2002).
109. L. F. Tietze and H. Schirok, J. Am. Chem. Soc.,121, 10264 (1999).
110. S. J. O’Connor, L. E. Overman, and P. V. Rucker,Synlett, 1009 (2001).
111. M. E. Fox, C. Li, J. P. Marino, Jr, and L. E. Overman,J. Am. Chem. Soc.,121, 5467 (1999).
112. J. Li, S. Jeong, L. Esser, and P. G. Harran,Angew. Chem. Int. Ed.,40, 4765 (2001);
J. Li, A. W. G. Burgett, S. L. Esser, C. Amezcua, and P. G. Harran,Angew. Chem.
Int. Ed.,40, 4770 (2001).
113. S. J. Danishefsy, J. J. Masters, W. B. Young, J. T. Link, L. B. Snyder, T. V.
Magee, D. K. Jung, R. C. A. Isscs, W. G. Bornmann, C. A. Alaimo, C. A. Coburn, and M. D. Di Grandi,J. Am. Chem. Soc.,118, 2843 (1996).
114. S. Ma and E. Negishi,J. Am. Chem. Soc.,117, 6345 (1995).
115. R. Grigg, M. J. Dorrity, J. F. Malone, V. Sridharan, and S. Sukirthalingam, Tetra- hedron Lett.,31, 1343 (1990); Reviews: R. Grigg and V. Sridharan,J. Organomet.
Chem.,576, 65 (1999); A. de Meijere and S. Br¨ase,J. Organomet. Chem.,576, 88 (1999).
116. Reviews: (a) M. Shibasaki, C. D. J. Bodemn, and A. Kojima,Tetrahedron,53, 7371 (1997); M. Shibasaki and E. M. Vogl, J. Organomet. Chem., 576, 1 (1999); (b) Y. Donde and L. E. Overman, in Catalytic Asymmetric Synthesis, Ed. I. Ojima, Wiley-VCH, New York, 2000, p. 675; (c) E. J. Corey and A. Guzman-Perez, Angew. Chem. Int. Ed., 37, 388 (1998); C. Bolm, J. P. Hildebrand, K. Muniz, and N. Hermanns,Angew. Chem. Int. Ed.,40, 3285 (2001).
117. F. Ozawa, A. Kubo, and T. Hayashi,J. Am. Chem. Soc.,113, 1417 (1991); F. Ozawa, A. Kubo, Y. Matsumoto, T. Hayashi, E. Nishioka, K. Yanagi, and K. Moriguchi, Organometallics,12, 4188 (1993).
118. O. Loiseleur, M. Hayashi, N. Schmees, and A. Pfaltz, Synthesis, 1338 (1997);
O. Loiseleur, P. Meier, and A. Pfaltz, Angew. Chem. Int. Ed. Engl., 35, 200 (1996); review: O. Loiseleur, M. Hayashi, M. Keenan, N. Schmees, and A. Pfaltz, J. Organomet. Chem.576, 16 (1999).
119. S. R. Gilbtson and Z. Fu,Org. Lett.,3, 161 (2001).
120. G. Trabesinger, A. Albinati, N. Feiken, R. W. Kunz, P. S. Pregosin, and M. Tscho- erner,J. Am. Chem. Soc.,119, 6315 (1997).
121. L. F. Tietze and K. Thede,Synlett, 1417 (2000).
121a. Review, A. B. Dounay, and L. E. Overman,Chem. Rev.,103, 2945 (2003).
122. L. F. Tietze and R. Schimpf, Angew. Chem. Int. Ed. Engl.,33, 1089 (1994); L. F.
Tietze and T. Raschke,Synlett, 597 (1995).
123. Y. Sato, M. Sodeoka, and M. Shibasaki,J. Org. Chem.,54, 4738 (1989).
124. N. E. Carpenter, D. J. Kucera, and L. E. Overman,J. Org. Chem.,54, 5846 (1989).
125. K. Ohrai, K. Kondo, M. Sodeoka, and M. Shibasaki,J. Am. Chem. Soc.,116, 11737 (1994).
126. K. Kondo, M. Sodeoka, M. Mori, and M. Shibasaki, Tetrahedron Lett., 34, 4219 (1993),Synthesis, 920 (1993).
127. T. Takemoto, M. Sodeoka, H. Sasai, and M. Shibasaki, J. Am. Chem. Soc., 115, 8477 (1993).
128. T. Oshima, K. Kagechika, M. Adachi, M. Sodeoka, and M. Shibasaki,J. Am. Chem.
Soc.,118, 7108 (1996).
129. A. B. Dounay, K. Hatanaka, J. J. Kodanko, M. Oestreich, L. E. Overman, L. A.
Pfeifer, and M. M. Weiss,J. Am. Chem. Soc.,125, 6261 (2003).
130. S. Y. W. Lau and B. A. Keay,Synlett, 605 (1999).
131. A. D. Lebsack, J. T. Link, L. E. Overman, and B. A. Steams, J. Am. Chem. Soc., 124, 9008 (2002).
132. R. Imbos, A. J. Minnaard, and B. L. Feringa,J. Am. Chem. Soc.,124, 184 (2002).
133. P. Nilsson, M. Larhed, and A. Hallberg,J. Am. Chem. Soc.,125, 3430 (2003).
134. N. D. Buezo, I. Alonso, and J. Carretero,J. Am. Chem. Soc.,120, 7129 (1998).
135. N. D. Buezo, O. G. Mancheno, and J. Carretero,Org. Lett.,2, 1451 (2000).
136. W. Fischetti and R. F. Heck,J. Org. Chem.,49, 1640 (1984).
137. J. M. D’Connor, B. J. Stallman, W. G. Clark, A. Y. L. Shu, R. E. Spada, T. M.
Stevenson, and H. A. Dieck,J. Org. Chem.,48, 807 (1983).
138. T. G. Back, R. J. Bethell, M. Parvez, and J. A. Taylor, J. Org. Chem., 66, 8599 (2001).
139. R. V. Rozhkov and R. C. Larock,Org. Lett.,5, 797 (2003).
140. R. C. Larock and C. A. Fried,J. Am. Chem. Soc.,112, 5882 (1990).
141. S. Iyer, C. Ramesh, and G. M. Kulkarni,Synlett, 1241 (2001).
142. R. C. Larock, N. G. Berrios-Pena, C. A. Fried, E. K. Yum, C. Tu, and W. Leong, J. Org. Chem.,58, 4509 (1993).
143. M. E. Kuehne, T. Wang, and P. J. Seaton,J. Org. Chem.,61, 6001 (1996).
144. K. Kondo, M. Sodeoka, and M. Shibasaki,Tetrahedron, Asymmetry,6, 2453 (1995).
145. Y. Wang, X. Dong, and R. C. Larock,J. Org. Chem.,68, 3090 (2003).
146. I. Shimizu and J. Tsuji,Chem. Lett., 233 (1984).
147. S. Ma and E. Negishi,J. Am. Chem. Soc.,117, 6345 (1995).
148. I. Shimizu, T. Sugiura, and J. Tsuji,J. Org. Chem.,50, 537 (1985).
149. S. Ma and S. Zhao,J. Am. Chem. Soc.,121, 7943 (1999).
150. S. Ma and S. Zhao,J. Am. Chem. Soc.,123, 5578 (2001).
151. S. Ma and W. Gao,Synlett, 65 (2002).
152. C. H. Oh, S. H. Jung, S. Y. Bang, and D. I. Park,Org. Lett.,4, 3325 (2002).
153. K. Okura and H. Alper,J. Org. Chem.,62, 1566 (1997).
154. S. Ma and Z. Shi,J. Org. Chem.,63, 6387 (1998).
155. S. Ma, D. Duan, and Z. Shi,Org. Lett.,2, 1419 (2000).
156. A. Arcadi, S. Cacchi, G. Fabrizi, F. Marinelli, and P. Pace,Eur. J. Org. Chem., 3305 (1999); 4099 (2000).
157. S. Ma and H. Xie, J. Org. Chem.,67, 6575 (2002).
158. S. Ma and W. Gao,Org. Lett.,4, 2989 (2002).
159. F. P. J. T. Rutjes, K. C. M. F. Tjen, L. B. Wolf, W. F. J. Karstens, H. E. Schoe- maker, and H. Hiemstra,Org. Lett.,1, 717 (1999).
160. H. Ohno, A. Toda, Y. Miwa, T. Taga, E. Osawa, Y. Yamaoka, N. Fujii, and T. Ibuka, J. Org. Chem.,64, 2992 (1999).
161. K. Dieter and H. Yu,Org. Lett.,3, 3855 (2001).
162. W. E. Karstens, F. P. J. T. Rutjes, and H. Hiemstra, Tetrahedron Lett., 38, 6275 (1997).
163. W. E. Karstens, M. Stol, F. P. J. T. Rutjes, and H. Hiemstra,Synlett, 1126 (1998).
164. R. C. Larock and J. M. Zenner,J. Org. Chem.,60, 482 (1995).
165. K. Hiroi, Y. Hiratsuka, K. Watanabe, I. Abe, F. Kato, and M. Hiroi, Synlett, 263 (2001).
166. R. C. Larock, Y. He, W. W. Leong, X. Han, M. D. Refvik, and J. M. Zenner, J.
Org. Chem.,63, 2154 (1998).
167. K. Hiroi, F. Kato, and A. Yamagata,Chem. Lett., 397 (1998).
168. M. Ahmar, B. Cazes, and J. Gore, Tetrahedron Lett.,26, 3795 (1985).
169. S. Ma, N. Jiao, S. Zhao, and H. Hou,J. Org. Chem.,67, 2837 (2002).
170. S. Ma and N. Jiao,Angew. Chem. Int. Ed.,41, 4737 (2002).
171. C. H. Oh, C. Y. Rhim, C. H. Song, and J. H. Ryu,Chem. Lett., 1140 (2002).
172. R. Grigg and R. Pratt,Tetrahedron Lett.,38, 4489, 5031 – (1997).
173. R. Grigg, J. Sansano, V. Santhakunar, V. Sridharan, M. T. Pett, and D. Wilson, Tetrahedron,53, 11803 (1997).
174. T. H. Huang, H. M. Chang, M. Y. Wu, and C. H. Cheng, J. Org. Chem., 67, 99 (2002).
175. Y. H. Ha and S. K. Kang, Org. Lett.,4, 1143 (2002).
176. U. Anwar, R. Grigg, M. Rasparini, V. Savic, and V. Srudharan, Chem. Commun., 645, 933 (2000).
177. S. K. Kang, S. W. Lee, J. Jung, and Y. Lim,J. Org. Chem.,67, 4376 (2002).
178. H. Tsutsui and K. Narasaka, Chem. Lett., 45 (1999).
179. H. Tsutsui and K. Narasaka, Chem. Lett., 526 (2001).
180. M. Kitamura, S. Chiba, O. Saku, and K. Narasaka,Chem. Lett., 606 (2002).
181. M. Kitamura, S. Zaman, and K. Narasaka,Synlett, 974 (2001); S. Zaman, M. Kita- mura, and K. Narasaka,Bull. Chem. Soc. Jpn.,76, 1055 (2003).
182. J. Helaja and R. G¨ottlich, Chem. Commun., 720 (2002).