Enone Formation from Ketones and Cycloalkenylation

Một phần của tài liệu Palladium reagents and catalysts new perspectives for the 21st century tsuji (Trang 108 - 117)

Preparation of enones from saturated ketones by Pd(II)-promoted dehydrosilyla- tion via silyl enol ethers was reported by Ito. Transmetallation of the silyl enol ether of cyclohexanone 519with Pd(OAc)2 gives the oxo-π-allylpalladium com- plex520(Pd enolate), which undergoesβ-H elimination to afford cyclohexenone.

BQ is used as an oxidant of Pd(0) [211]. However, the enone formation can be carried out using a catalytic amount of Pd(OAc)2in DMSO under oxygen without other oxidants at room temperature. Also aldehyde521is converted to unsaturated aldehyde522via silyl ether in DMSO [4].

519 520

base

BQ

+ Pd(0)

DMSO, O2 25°C, 86%

521 522

O OTMS O-PdOAc O

H O Pd-X

C8H17

CHO

C8H17

CHO C8H17 OTMS

AcOH

Me3SiCl Pd(OAc)2

Pd(OAc)2

The enone formation has been applied to a number of natural product syntheses.

The enone 524 was prepared from the complex molecule 523 and successfully applied to the total synthesis of pallescensin [212]. Even the phenolic OH in525 was converted to the conjugated ketone. The reaction was utilized as a key step in hypoxyxylerone synthesis [213]. In the total synthesis of galbulimima alkaloid GB 13, Mander converted a cyclohexanone in the complicated molecule 526 to the corresponding cyclohexenone via silyl enol ether in 82 % yield [214].

524 523

MeCN, 78%

O

O OMe

THPO

O

OSiMe3 OMe

THPO

O

O OMe

THPO

TMSCl Pd(OAc)2

525 56%

1. TMSOTf, 2,6-lutidine 2. Pd(OAc)2,

MeCN, reflux O

MeO

OMe OH

OMe

MeO OMe

O MeO

OMe O

OMe

MeO OMe

526

2) Pd(OAc)2, DMSO MeCN, 82%

1) LDA, TMSCl, THF N

F3C O

O MOMO

H H H

H H

H

N F3C O

O MOMO

H H H

H H

In the presence of a double bond, its intramolecular insertion to Pd enolate in 528takes place. For example, the silyl enol ether527 undergoes transmetallation with Pd(OAc)2 to give the Pd enolate 528, or the oxy-π-allylpalladium, which undergoes 6-exo cyclization to generate 529. The subsequent β-H elimination gives the 3-methylcyclohexenone (530) [215]. The reaction is called ‘cycloalkeny- lation’ [216].

O-SiMe3 O

PdOAc

O

PdOAc

6-exo cyclization

528 O

529

O

530 527

+ Pd(OAc)2

TM

Five- and six-membered rings can be prepared by this reaction [217], and the reaction has been applied to syntheses of natural products. Now the cycloalkeny- lation can be carried out with a catalytic amount of Pd(OAc)2in DMSO under O2. The bicyclo[3.2.1]octenone 532, a partial skeleton of gibberellin, was obtained in 81 % yield by the cycloalkenylation of the silyl dienol ether 531in DMSO using

O2(1 atm), DMSO 81%

532

gibberellin A12

OTBDMS

MOMO

O

MOMO

O

HO2C H CO2H

H

Pd(OAc)2(3 mol%)

531

steps

3 mol% of Pd(OAc)2 under O2. Use of TBDMS gave higher yields than TMS group [218,219]. Furthermore, the reaction has been extended to coupling with an aromatic ring. Treatment of533with Pd(OAc)2 in DMSO under O2 generates the Pd enolate 534, which has no possibility of β-H elimination and attacks the aromatic ring to afford the benzo-fused bicyclo[3.3.0]octane535[220].

533

Pd(OAc)2(10 mol%) O2(1 atm), DMSO

45°C, 70%

Me2SiO

Me

H Me

Me 534 Me

535 O O

Me

Me PdOAc

References

1. J. Smidt, W. Hafner, R. Jira, R. Sieber, J. Sedlmeier, and J. Sabel, Angew. Chem., Int. Ed. Engl.,1, 80 (1962); J. Smidt,Chem. Ind., 54 (1962).

2. Accounts: S. Uchiumi, K. Ataka, and T. Matsuzaki, J. Organomet. Chem., 576, 279 (1999).

3. R. C. Larock and T. R. Hightower,J. Org. Chem.,58, 5298 (1993).

4. R. C. Larock and T. R. Hightower,Tetrahedron Lett.,36, 2423 (1995).

5. R. A. T. M. van Benthem and W. N. Speckamp, J. Org. Chem., 57, 6083 (1992);

R. A. T. M. van Benthem, H. Hiemstra, J. J. Michels, and W. N. Speckamp, J.

Chem. Soc. Chem. Commun., 357 (1994).

6. R. A. T. M. van Benthem, H. Hiemstra, P. W. N. van Leewen, J. W. Geus, and W. N.

Speckamp,Angew. Chem. Int. Ed. Engl.,34, 457 (1995).

7. B. A. Steinhoff, S. R. Fix, and S. S. Stahl,J. Am. Chem. Soc.,124, 766 (2002).

8. S. R. Fix, J. L. Brice, and S. S. Stahl,Angew. Chem. Int. Ed.,41, 164 (2002).

9. S. S. Stahl, J. L. Thorman, R. C. Nelson, and M. A. Kozee,J. Am. Chem. Soc.,123, 7188 (2001).

10. S. Yamaguchi, S. Ohno, and K. Tamao,Synlett, 1199 (1997).

11. X. Du, M. Suguro, K. Hirabayashi, A. Mori, T. Nishikata, N. Hagiwara, K. Kawata, T. Okada, H. F. Wang, K. Fugami, and M. Kosugi,Org. Lett.,3, 3313 (2001).

12. A. Lei and X. Zhang,Org. Lett.,4, 2285 (2002).

13. M. Tamura and A. Yasui,J. Chem. Soc. Chem. Commun., 1209 (1968).

14. J. Tsuji,Acc. Chem. Res.,2, 144 (1969).

15. Reviews: L. S. Hegedus, Comprehensive Organic Synthesis, 4, 551, 571 (1991); J.

Mol. Catal.,19, 201 (1983);Angew. Chem. Int. Ed. Engl.,27, 1113 (1988).

16. Reviews: T. Hosokawa and S. Murahashi,Heterocycles,33, 1079 (1992);Acc. Chem.

Res.,23, 49 (1990).

17. F. C. Philips,Am. Chem. J.,16, 255 (1894).

18. S. C. Ogburn and W. C. Brastow,J. Am. Chem. Soc.,55, 1307 (1933).

19. Reviews: J. Tsuji, Synthesis, 369 (1984); Comprehensive Organic Synthesis,7, 449 (1991).

20. J. Tsuji, I. Shimizu, and K. Yamamoto,Tetrahedron Lett., 2975 (1976).

21. H. Iwadare, H. Satoh, H. Arai, I. Shiina, and T. Mukaiyama,Chem. Lett., 817 (1999).

22. J. Tsuji, I. Shimizu, H. Suzuki, and Y. Naito,J. Am. Chem. Soc.,101, 5070 (1979);

I. Shimizu, Y. Naito, and J. Tsuji,Tetrahedron Lett.,21, 487 (1980).

23. R. Paczkowski, C. Maichle-M¨ossmer, and M. E. Maier,Org. Lett.,2, 3967 (2000).

24. S. K. Kang, K. Y. Jung, J. U. Chung, E. Y. Namkoong, and T. H. Kim, J. Org.

Chem.,60, 4678 (1995).

25. T. Takahashi, K. Kasuga, and J. Tsuji,Tetrahedron Lett., 4917 (1978).

26. D. G. Miller and D. D. M. Wayner,J. Org. Chem.,55, 2924 (1990).

27. A. Kishi, T. Higashino, S. Sakaguchi, and S. Ishii,Tetrahedron Lett.,41, 99 (2000).

28. B. Betzemeier, F. Lhermitte, and P. Knochel,Tetrahedron Lett.,39, 6667 (1998).

29. J. W. Francis and P. M. Henry,J. Mol. Catal. A Chem.,99, 77 (1995).

30. A. El-Qisairi, O. Hamed, and P. M. Henry,J. Org. Chem.,63, 2790 (1998).

31. A. Kishi, S. Sakaguchi, and S. Ishii, Org. Lett.,2, 523 (2000).

32. M. R¨onn, J. E. B¨ackvall, and P. G. Andersson,Tetrahedron Lett.,36, 7749 (1995).

33. A. Tanaglia and F. Kammerer,Synlett, 576 (1996).

34. R. C. Larock, L. Wei, and T. R. Hightower,Synlett, 522 (1998).

35. Y. Uozumi, K. Kato, and T. Hayashi,J. Org. Chem.,63, 5071 (1998); H. Hocke and Y. Uozumi,Synlett, 2049 (2002).

36. M. Arai, M. Kuraishi, T. Arai, and H. Sasai,J. Am. Chem. Soc.,123, 2907 (2001).

37. I. I. Moiseev, M. N. Vargaftik, and J. K. Syrkin,Dokl. Akad. Nauk. SSSR,133, 377 (1960).

38. S. Nakamura and T. Yasui,J. Catal.,17, 366 (1976);23, 315 (1971).

39. S. E. Bystrom, E. M. Lasson, and B. Alkermark, J. Org. Chem., 55, 5674 (1990);

A. Heumann, B. Akermark, S. Hasson, and T. Rein,Org. Synth.,68, 109 (1990).

40. Review: G. Cardillo and M. Orena,Tetrahedron,46, 3321 (1990).

41. A. Kasahara, T. Izumi, K. Sato, K. Maemura, and T. Hayasaka, Bull. Chem. Soc.

Jpn.,50, 1899 (1977).

42. U. Annby, M. Stenkula, and C. M. Andersson,Tetrahedron Lett.,34, 8545 (1993).

43. P. A. Jacobi and Y. Li,Org. Lett.,5, 701 (2003).

44. D. E. Korte, L. S. Hegedus, and R. K. Wirth,J. Org. Chem.,42, 1329 (1977).

45. G. Zanoni, A. Porta, A. Meriggi, M. Franzini, and G. Vidari,J. Org. Chem.,67, 6064 (2002).q

46. R. A. T. M. van Benthem, H. Hiemstra, G. Longarela, and W. N. Speckamp, Tetra- hedron Lett.,35, 9281 (1994).

47. Y. Hirai, J. Watanabe, T. Nozaki, H. Yokoyama, and S. Yamaguchi, J. Org. Chem., 62, 776 (1997).

48. H. Yokoyama, K. Otaya, H. Kobayashi, M. Miyazawa, S. Yamaguchi, and Y. Hirai, Org. Lett.,2, 2427 (2000).

49. A. Lei, G. Liu, and X. Lu,J. Org. Chem.,67, 974 (2002).

50. L. S. Hegedus, G. F. Allen, J. J. Bozell, and E. L. Waterman,J. Am. Chem. Soc.,100, 5800 (1978); L. S. Hegedus, G. F. Allen, and D. J. Olsen, J. Am. Chem. Soc.,102, 3583 (1980).

51. M. Gowan, A. S. Caille, and C. K. Lau,Synlett, 1312 (1997).

52. J. Tsuji and H. Takahashi,J. Am. Chem. Soc.,87, 3275 (1965); 90, 2387 (1968).

53. J. Montgomery, G. M. Wieber, and L. S. Hegedus, J. Am. Chem. Soc., 112, 6255 (1990); J. J. Masters, L. S. Hegedus, and J. Tamariz,J. Org. Chem.,56, 5666 (1991).

54. T. Pei, X. Wang, and R. A. Widenhoefer,J. Am. Chem. Soc.,125, 648 (2003).Org.

Lett.,5, 2699 (2003).

55. J. Tsuji, M. Morikawa, and J. Kiji,Tetrahedron Lett., 1061 (1963);J. Am. Chem. Soc., 86, 8451 (1964).

56. J. Tsuji, M. Morikawa, and J. Kiji,Tetrahedron Lett., 1437 (1963).

57. D. M. Fenton and P. J. Steinwand,J. Org. Chem.,37, 2034 (1972).

58. T. Yokota, S. Sakaguchi, and Y. Ishii,J. Org. Chem.,67, 5005 (2002).

59. M. Hayashi, H. Takezaki, Y. Hashimoto, K. Takaoki, and K. Saigo,Tetrahedron Lett., 39, 7529 (1998).

60. Accounts: Y. Tamaru and M. Kimura,Synlett, 749 1997).

61. H. Harayama, A. Abe, T. Sakado, M. Kimura, K. Fugami, S. Tanaka, and Y. Tamaru, J. Org. Chem.,62, 2113 (1997).

62. H. Harayama, H. Okuno, Y. Takahashi, M. Kimura, K. Fugami, S. Tanaka, and Y. Tamaru,Tetrahedron Lett.,37, 7287 (1996).

63. Y. Tamaru, H. Higashimura, K. Naka, M. Hojo, and Z. Yoshida,Angew. Chem. Int.

Ed. Engl.,24, 1045 (1985).

64. M. F. Semmelhack, W. R. Epa, A. W. H. Cheung, Y. Gu, C. Kim, N. Zhang, and W. Lew, J. Am. Chem. Soc.,116, 7455 (1994); T. Gracza and V. Jager, Synthesis, 1359 (1994).

65. Y. Tamaru, M. Hojo, and Z. Yoshida,J. Org. Chem.,56, 1099 (1991).

66. Y. Ukaji, M. Miyamoto, M. Mikuni, S. Takeuchi, and M. Inomata,Bull. Chem. Soc.

Jpn.,69, 735 (1996).

67. I. Moritani and Y. Fujiwara,Tetrahedron Lett., 1119 (1967); Y. Fujiwara, I. Moritani, and M. Matsuda,Tetrrahedron,24, 4819 (1968).

68. Review: I. Moritani and Y. Fujiwara,Synthesis, 524 (1973).

69. Y. Fujiwara, R. Asano, I. Moritani, and S. Teranishi,J. Org. Chem.,41, 1681 (1976).

70. C. Jia, W. Lu, T. Kitamura, and Y. Fujiwara, Org. Lett., 1, 2097 (1999); C. Jia, T. Kitamura, and Y. Fujiwara, Acc. Chem. Res.,34, 633 (2001).

71. T. Yokota, M. Tani, S. Sakaguchi, and Y. Ishii,J. Am. Chem. Soc.,125, 1476 (2003).

72. K. Mikami, M. Hatano, and M. Terada,Chem. Lett., 55 (1999).

73. H. J. Kn¨olker and K. R. Reddy,Synlett, 596 (1999).

74. H. Hagelin, J. D. Oslob, and B. Akermark,Chem. Eur. J., 2413 (1999); H. J. Kn¨olker and J. Kn¨oll,Chem. Commun., 1170 (2003).

75. P. S. Baran and E. J. Corey, J. Am. Chem. Soc., 124, 7904 (2002); P. S. Baran, C. A. Guerrero, and E. J. Corey,J. Am. Chem. Soc.,125, 5628 (2003).

76. H. A. Dieck and R. F. Heck,J. Org. Chem.,40, 1083 (1975).

77. Y. C. Jung, R. K. Mishra, C. H. Yoon, and K. W. Jung,Org. Lett.,5, 2231 (2003);

C. S. Cho and S. Uemura,J. Organometal. Chem.,465, 85 (1994).

78. K. Hirabayashi, J. Ando, Y. Nishihara, A. Mori, and T. Hiyama,Synlett, 99 (1999);

Org. Lett.,5, 2231 (2003).

79. K. Hirabayashi, J. Ando, J. Kawashima, Y. Nishihara, A. Mori, and T. Hiyama,Bull.

Chem. Soc. Jpn.,73, 1409 (2000).

80. J. P. Parrish, Y. C. Jung, S. I. Shin, and K. W. Jung,J. Org. Chem.,67, 7127 (2002).

81. K. Hirabayashi, Y. Nishihara, A. Mori, and T. Hiyama, Tetrahedron Lett.,34, 7893 (1998).

82. I. Macsari and K. J. Szabo,Chem. Eur. J.,7, 4097 (2001).

83. A. Inoue, H. Shinokubo, and K. Oshima,J. Am. Chem. Soc.,125, 1485 (2003).

84. J. Tsuji, H. Takahashi, and M. Morikawa,Tetrahedron Lett., 4387 (1965).

85. Review: B. M. Trost,Acc. Chem. Res.,13, 385 (1980).

86. B. M. Trost, W. P. Conway, P. E. Strege, and T. J. Dietsche,J. Am. Chem. Soc.,96, 7165 (1974).

87. W. R. Jackson and I. U. Straus,Tetrahedron Lett., 2591 (1975); Aust. J. Chem.,30, 553 (1977);31, 1073 (1978).

88. J. S. Temple and J. Schwartz,J. Am. Chem. Soc.,102, 7381 (1980);104, 1310 (1982);

M. Riediker and J. Schwartz, Tetrahedron Lett.,22, 4655 (1981).

89. L. S. Hegedus, W. H. Darlington, and C. E. Russel,J. Org. Chem.,45, 5193 (1980).

90. J. M. R. Hoffmann, A. R. Otte, and A. Wilde,Angew. Chem. Int. Ed. Engl.,31, 234 (1992).

91. A. Wilde, A. R. Otte, and H. M. R. Hoffmann,J. Chem. Soc. Chem. Commun., 615 (1993).

92. J. Tsuji, J. Kiji, and M. Morikawa,Tetrahedron Lett., 1811 (1963).

93. J. Tsuji, S. Imamura, and J. Kiji,J. Am. Chem. Soc.,86, 4491 (1964).

94. T. Suzuki and J. Tsuji,Bull. Chem. Soc. Jpn.,46, 655 (1973).

95. Reviews: J. E. B¨ackvall, Acc. Chem. Res., 16, 335 (1983);New J. Chem.,14, 447 (1990).

96. Mitsuibishi Kasei Corp.,ChemTech, 759 (1988).

97. M. Rohm, P. G. Andersson, and J. E. B¨ackvall,Tetrahedron Lett.,38, 3603 (1997).

98. J. L¨ofstedt, J. Franzen, and J. E. B¨ackvall,J. Org. Chem.,66, 8015 (2001).

99. Y. I. M. Nilsson, R. G. P. Gatti, P. G. Andersson, and J. E. B¨ackvall, Tetrahedron, 52, 7511 (1996).

100. Review: R. W. Bates and V. Satcharoen,Chem. Soc. Rev.,31, 12 (2002).

101. R. G. Schultz, Tetrahedron Lett., 301 (1964); Tetrahedron, 20, 2809 (1964); M. S.

Lupin and B. L. Shaw,Tetrahedron Lett., 883 (1964); M. S. Lupin, J. Powell, and B. L. Shaw,J. Chem. Soc., A, 1687 (1966).

102. L. S. Hegedus, N. Kambe, Y. Ishii, and A. Mori,J. Org. Chem.,50, 2240 (1985).

103. D. Lathbury, P. Vernon, and T. Gallagher,Tetrahedron Lett.,27, 6009 (1986); D. N.

A. Fox, D. Lathbury, M. F. Mahon, K. C. Molloy, and T. Gallagher, J. Am. Chem.

Soc.,113, 2652 (1991).

104. B. B. Snider and F. He,Tetrahedron Lett.,38, 5453 (1997).

105. M. Kimura, N. Saeki, S. Uchida, H. Harayama, S. Tanaka, K. Fugami, and Y. Ta- maru,Tetrahedron Lett.,34, 7611 (1993).

106. S. Ma and W. Gao,J. Org. Chem.,67, 6104 (2002).

107. R. D. Walkup and M. D. Mosher,Tetrahedron Lett.,35, 8545 (1994).

108. G. Liu and X. Lu,Tetrahedron Lett.,44, 127 (2003).

109. C. Jonasson, A. Horvah, and J. E. B¨ackvall,J. Am. Chem. Soc.,122, 9600 (2000).

110. Review: K. Utimoto,Pure Appl. Chem.,55, 1845 (1983).

111. P. Compain, J. M. Vatele, and J. Gore,Synlett, 943 (1994).

112. K. Imi, K. Imai, and K. Utimoto,Tetrahedron Lett.,28, 3127 (1987).

113. C. Lambert, K. Utimoto, and H. Nozaki,Tetrahedron Lett.,25, 5323 (1984).

114. T. Wakabayashi, Y. Ishii, K. Ishikawa, and M. Hidai,Angew. Chem., Int. Ed. Engl., 35, 2123 (1996).

115. K. Iritani, N. Yanagihara, and K. Utimoto,J. Org. Chem.,51, 5499 (1986).

116. Y. Fukuda, K. Utimoto, and H. Nozaki,Heterocycles,25, 297 (1987).

117. D. E. Rudisill and J. K. Stille,J. Org. Chem.,54, 5856 (1989).

118. Q. Huang and R. C. Larock,J. Org. Chem.,68, 980 (2003).

119. B. Gabriele, G. Salerno, and E. Lauria,J. Org. Chem.,64, 7687 (1999).

120. B. Gabriele, G. Salerno, and A. Fazio,Org. Lett.,2, 351 (2000).

121. B. M. Trost and M. C. McIntosh,J. Am. Chem. Soc.,117, 7255 (1995).

122. J. Tsuji, M. Takahashi, and T. Takahashi,Tetrahedron Lett.,21, 849 (1980).

123. J. Tsuji, N. Iwamoto, and M. Morikawa,J. Am. Chem. Soc.,86, 2095 (1964).

124. G. P. Chiusoli, C. Venturello, and S. Merzoni,Chem. Ind., 977 (1968).

125. Y. Sakurai, S. Sakaguchi, and Y. Ishii,Tetrahedron Lett.,40, 1701 (1999).

126. J. Li, H. Jiang, A. Feng, and L. Jia,J. Org. Chem.,64, 5984 (1999).

127. H. Okumoto, S. Nishihara, H. Nakagawa, and A. Suzuki,Synlett, 217 (2000).

128. A. Bacchi, M. Costa, B. Gabriele, G. Pelizzi, and G. Salerno,J. Org. Chem.,67, 4450 (2002).

129. B. Gabriele, G. Salerno, F. De Pascali, M. Costa, and G. P. Chiusoli,J. Org. Chem., 64, 7693 (1999).

130. Y. Nan, H. Miao, and Z. Yang,Org. Lett.,2, 297 (2000).

131. A. Arcadi, S. Cacchi, S. D. Giuseppe, G. Fabrizi, and F. Marinelli,Org. Lett.,4, 2409 (2002).

132. H. L¨utjens and P. J. Scammells,Synlett, 1079 (1999).

133. B. Gabriele, M. Costa, G. Salerno, and G. P. Chiusoli,J. Chem. Soc., Perkin Trans.

I, 83 (1994).

134. J. T. Njardarson and J. L. Wood,Org. Lett.,3, 2431 (2001).

135. J. Tsuji and T. Nogi,J. Am. Chem. Soc.,88, 1289 (1966).

136. B. Gabriele, G. Salerno. M. Costa, and G. P. Chiusoli, Tetrahedron Lett., 40, 989 (1999).

137. A. Bonardi, M. Costa, B. Gabriele, G. Salerno, and G. P. Chiusoli,Tetrahedron Lett.

36, 7495 (1995).

138. T. Nogi and J. Tsuji,Tetrahedron,25, 4099 (1969).

139. B. Gabriele, M. Costa, G. Salerno, and G. P. Chiusoli,Chem. Commun., 1007 (1992).

140. H. Kataoka, K. Watanabe, and K. Goto,Tetrahedron Lett.,31, 4181 (1990).

141. H. Kataoka, K. Watanabe, K. Miyazaki, S. Tahara, K. Ogu, R. Matsuoka, and K. Goto,Chem. Lett., 1705 (1990).

142. D. Vijaykumar, W. Mao, K. S. Kirschbaum, and J. A. Katzenellenbogen, J. Org.

Chem.,67, 4904 (2002).

143. R. Mahrwald and H. Schick,Angew. Chem. Int. Ed. Engl.,30, 593 (1991).

144. K. Kaneda, T. Uchiyama, Y. Fujiwara, T. Imanaka, and S. Teranishi, Tetrahedron Lett., 1067 (1974);J. Org. Chem.,44, 55 (1979).

145. K. Kaneda, H. Kobayashi, Y. Fujiwara,T. Imanaka, and S. Teranishi, Tetrahedron Lett., 2833 (1975).

146. A. N. Thadani and V. H. Rawal,Org. Lett.,4, 4317 (2002).

147. A. N. Thadani and V. H. Rawal,Org. Lett.,4, 4321 (2002).

148. L. Zhao and X. Lu,Org. Lett.,4, 3903 (2002).

149. Reviews: X. Lu, G. Zhu, and Z. Wang, Synlett, 115 (1998); X. Lu, S. Ma, J. Ji, G. Zhu, and H. Jiang,Pure Appl. Chem.,66, 1501 (1994); X. Lu and S. Ma, inTran- sition Metal Catalyzed Reactions, Eds S. -I. Murahashi and S. G. Davies, Blackwell Science, Oxford, 1999, p. 133.

150. Q. Zhang, X. Lu, and X. Han,J. Org. Chem., 66, 7676 (2001);J. Am. Chem. Soc., 122, 7604 (2000).

151. J. Ji, C. Zhang and X. Lu,J. Org. Chem.,60, 1160 (1995).

152. J. Ji and X. Lu,Tetrahedron,50, 9067 (1994).

153. H. Jiang, S. Ma, G. Zhu, and X. Lu,Tetrahedron,52, 10945 (1996).

154. X. Xie, X. Lu, Y. Liu, and W. Xu,J. Org. Chem.,66, 6545 (2001).

155. X. Xie and X. Lu,Synlett, 707 (2000).

156. Z. Wang, Z. Zhang, and X. Lu,Organometallics,19, 775 (2000).

157. R. van Helden and G. Verberg,Rec. Trav. Chim.,84, 1263 (1965).

158. J. M. Davidson and C. Triggs,Chem. Ind., 457 (1966);J. Chem. Soc. A, 1324 (1968).

159. J. M. Davidson and C. Triggs,Chem. Ind., 1361 (1967);J. Chem. Soc. A, 1331 (1968).

160. H. Itatani and H. Yoshimoto,Chem. Ind., 674 (1971);J. Org. Chem.,38, 76 (1973).

161. R. R. S. Clark, R. O. C. Norman, C. B. Thomas, and J. S. Wilson, J. Chem. Soc.

Perkin I, 1289 (1974).

162. A. Shiotani, H. Itatani, and T. Inagaki, J. Mol. Catal., 34, 57 (1986); A. Shiotani, M. Yoshikiyo, and H. Itatani,J. Mol. Catal.,18, 23 (1983).

163. W. Harris, C. H. Hill, E. Keech, and P. Malsher,Tetrahedron Lett.,34, 8361 (1993).

164. T. Itahara,J. Chem. Soc. Chem. Commun., 49 (1980); 254 (1981); Heterocycle,14, 100 (1980).

165. D. L. Boger and M. Patel,J. Org. Chem.,53, 1405 (1988).

166. T. Itahara,J. Org. Chem.,50, 5272 (1985).

167. M. Moreno-Manas, M. Perez, and R. Pleixats,J. Org. Chem.,61, 2346 (1996).

168. D. J. Koza and E. Carita,Synthesis, 2183 (2002).

169. L. Alcaraz and R. J. K. Taylor,Synlett, 791 (1997).

170. E. Shirakawa, Y. Murata, Y. Nakao, and T. Hiyama,Synlett, 1143 (1997).

171. K. M. Hossain, T. Shibata, and K. Takagi,Synlett, 1137 (2000).

172. Review, D. J. Rawlinson and G. Sosnovsky,Synthesis, 567 (1973).

173. Reviews, G. R. Newkome, W. E. Puckatt, V. K. Gupta, and G. E. Kiefer, Chem.

Rev.,86, 451 (1986); A. D. Rybov,Synthesis, 233 (1985).

174. A. C. Cope and R. D. W. Siekman,J. Am. Chem. Soc.,87, 3272 (1965); A. C. Cope and E. C. Friedrich,J. Am. Chem. Soc.,90, 909 (1968).

175. J. Dupont and M. Pfeffer,J. Organomet. Chem.,321, C13 (1987).

176. H. Takahashi and J. Tsuji,J. Organomet. Chem.,10, 511 (1967).

177. M. I. Bruce, B. L. Goodall, and F. G. A. Stone,J. Chem. Soc. Chem. Commun., 558 (1973).

178. S. Murahashi, Y. Tamba, M. Yamamura, and I. Moritani, Tetrahedron Lett., 3749 (1974); M. Yamamura, I. Moritani, and S. Murahashi, Chem. Lett., 1923 (1974);

S. Murahashi, Y. Tamba, M. Mamamura, and N. Yoshimura,J. Org. Chem.,43, 4099 (1978).

179. S. J. Tremont and H. R. Rahman,J. Am. Chem. Soc.,106, 5759 (1984).

180. J. S. McCallum, J. R. Gasdaska, L. S. Liebeskind, and S. J. Tremont, Tetrahedron Lett.,30, 4085 (1989).

181. R. A. Holton,J. Am. Chem. Soc.,99, 8083 (1977).

182. B. D. Dangel, K. Godula, S. W. Youn, B. Sezen, and D. Sames,J. Am. Chem. Soc., 124, 11856 (2002).

183. H. Horino and N. Inoue,J. Org. Chem.,46, 4416 (1981).

184. M. D. K. Boele, G. P. F. van Strijdonck, A. H. M. de Vries, P. C. J. Kamer, J. G.

deVries, and P. W. N. M. van Leeuwen,J. Am. Chem. Soc.,124, 1586 (2002).

185. B. Sezen, R. Franz, and D. Sames,J. Am. Chem. Soc.,124, 13372 (2002).

186. M. Miura, T. Tsuda, T. Satoh, and M. Nomura,Chem. Lett., 1103 (1997).

187. M. Miura, T. Tsuda, T. Satoh, S. Pivsa-Art, and M. Nomura,J. Org. Chem.,63, 5211 (1998).

188. D. M. Fenton and P. J. Steinwand,J. Org. Chem.,39, 701 (1974).

189. M. Graziani, P. Uguagliati, and G. Carturan,J. Organomet. Chem.,27, 275 (1971).

190. J. H. Pawlow, A. D. Sadow, and A. Sen,Organometallics,16, 1339 (1997).

191. M. Takagi, H. Miyagi, T. Yoneyama, and Y. Ohgomori, J. Mol. Catal. A,129, L-1 (1998).

192. J. Tsuji and N. Iwamoto,J. Chem. Soc. Chem. Commun., 380 (1966).

193. B. Gabriele, R. Mancuso, G. Salerno, and M. Costa,Chem. Commun., 486 (2003).

194. B. Gabriele, G. Salerno, D. Brindisi, M. Costa, and G. P. Chiusoli,Org. Lett.,2, 625 (2000); B. Gabriele, R. Mancuso, G. Salerno, and M. Costa,J. Org. Chem.,68, 601 (2003).

195. S. Fukuoka, M. Chono, and M. Kohno,J. Org. Chem.,49, 1458 (1984); Chemtech, 670 (1984).

196. P. Wehman, L. Borst, P. C. Kamer, and P. W. N. M. von Leeuwen,Chem. Ber.,130, 13 (1997).

197. O. Hamed, A. El-Qisairi, and P. M. Henry,J. Org. Chem.,66, 180 (2001).

198. G. ten Brink, I. W. C. E. Arends, and R. A. Sheldon,Science,287, 1636 (2000).

199. T. Nishimura, T. Onoue, K. Ohe, and S. Uemura,J. Org. Chem.,64, 6750 (1999).

200. N. Kakiuchi, Y. Maeda, T. Nishimura, and S. Uemura, J. Org. Chem., 66, 6620 (2001).

201. K. Hallman and C. Moberg,Adv. Synth. Catal.,343, 260 (2001).

202. E. M. Ferreira and B. M. Stolz,J. Am. Chem. Soc.,123, 7725 (2001).

203. J. A. Mueller, D. R. Jensen, and M. S. Sigman, J. Am. Chem. Soc., 124, 8202 (2002).

204. S. K. Mandel, D. R. Jensen, J. S. Pugsley, and M. S. Sigman, J. Org. Chem., 68, 4600 (2003).

205. D. R. Jensen, J. S. Pugsley, and M. S. Sigman, J. Am. Chem. Soc., 123, 7475 (2001).

206. G. R. Clark and S. Thiensathit,Tetrahedron Lett.,26, 2503 (1985).

207. T. Nishimura, K. Ohe, and S. Uemura,J. Am. Chem. Soc.,121, 2645 (1999).

208. H. Nemoto, M. Shiraki, and K. Fukumoto,Tetrahedron,50, 10391 (1994).

209. L. S. Hegedus and P. B. Ranslow,Synthesis, 953 (2000).

210. D. Mitchell, and L. S. Liebeskind,J. Am. Chem. Soc.,112, 291 (1990).

211. Y. Ito, T. Hirao, and T. Saegusa,J. Org. Chem.,43, 1011 (1978).

212. W. C. Liu and C. C. Liao,Chem. Commun., 117 (1999).

213. A. Piettre, E. Chevenier, C. Massardier, Y. Gimbert, and A. E. Greene,Org. Lett.,4, 3139.

214. L. N. Mander and M. M. McLachlan,J. Am. Chem. Soc.,125, 2400 (2003).

215. Y. Ito, H. Aoyama, T. Hirao, A. Mochizuki, and T. Saegusa,J. Am. Chem. Soc.,101, 494 (1979); Y. Ito, H. Aoyama, and T. Saegusa,J. Am. Chem. Soc.,102, 4519 (1980);

104, 5808 (1982).

216. Review: M. Toyota and M. Ihara,Synlett, 1211 (2002).

217. A. S. Kende, B. Roth, P. J. Santilippo, and T. J. Blacklock,J. Am. Chem. Soc.,104, 1784 (1982); A. S. Kende and D. J. Wustrow,Tetrahedron Lett.,26, 5411 (1985).

218. M. Toyota, T. Wada, K. Fukumoto, and M. Ihara, J. Am. Chem. Soc., 120, 4916 (1998).

219. M. Toyota, M. Rudyanto, and M. Ihara,J. Org. Chem.,67, 3374 (2002).

220. M. Toyota, A. Ilangovan, R. Okamoto, T. Masaki, M. Arakawa, and M. Ihara,Org.

Lett.,4, 4293 (2002).

Pd(0)-Catalyzed Reactions of sp2 Organic Halides and Pseudohalides

Một phần của tài liệu Palladium reagents and catalysts new perspectives for the 21st century tsuji (Trang 108 - 117)

Tải bản đầy đủ (PDF)

(664 trang)