SYNTHETIC APPLICATIONS OF THE Pd- OR Ni-CATALYZED

Một phần của tài liệu Handbook of organopalladium chemistry for organic synthesis vol 1 negishi (Trang 345 - 358)

Synthesis of biaryls via Pd- or Ni-catalyzed aryl–aryl coupling has found many attractive applications in the synthesis of oligo- and polyaryls and natural products containing biaryls. The former topic is discussed in Sect. III.2.17.2, and the latter is further supple- mented in Table 1of Sect. III.2.18.

MX CHO

MX Me

MX OMe

MX OMe

MX MOMO

MX O

MX CHO O

O

Br OHC

MeO

I

TfO MeO

MeO

TfO MeO

MeO2C

Y Me

MeO

OMe

N

BnO

Br OBn

Me

Me Bn

Br HOH2C

MeO OMe

OMe

ArMX Ar'Y

MX

B(OH)2

B(OH)2

Cr(CO)3

B(OH)2

B(OH)2

B(OH)2

ZnCl B(OH)2

SnBu3

ZnCl B(OH)2

SnBu3 Y = I Y = I Y = I Y = Br Y = Br Y = Br

SnBu3

SnBu3

B(OH)2

Cr(CO)3

Pd(PPh3)4

Pd(PPh3)4

Pd(PPh3)4

Pd(PPh3)4

Pd(PPh3)4

Pd(PPh3)4

Pd(PPh3)4

Pd(PPh3)4

Pd(PPh3)4

Pd(PPh3)4

Pd(PPh3)2Cl2

Pd(PPh3)2Cl2

Cl2Pd(PPh3)2

Cl2Pd(PPh3)2

Cat. Ar−Ar'

Entry Substrates Catalyst Yield (%) Reference

1 82

80

[112]

[113]

73 [114]

2

74 [115]

3

0 [116]

4

50 79 0 16 56 0

[17]

[17]

[17]

[17]

[17]

[17]

5

6 15

21

[117]

[118]

7 67 [119]

MX

MX

MX

I Cl

B(OH)2

Br Cl

B(OH)2 Y

ZnCl B(OH)2 B(OH)2

Y = I Y = Br Y = Cl

Ni(PPh3)4 Pd2(dba)3, P(t-Bu)3 Pd2(dba)3, P(t-Bu)3

Pd(PPh3)4, Ba(OH)2

Pd(PPh3)4, Ba(OH)2

94 [114]

9

56 [114]

10

93 97 93

[11]

[87]

[87]

8

TABLE 10. Pd- or Ni-Catalyzed Aryl–Aryl Coupling Providing Biaryls Containing Three Ortho Substituents

9:

(Continued)

MX Me

MX BnO

MeO Me

MX OMe

MOMO

Br MeO

OMe O

O

Br MeO Br

Br

MgBr

B(OH)2

B(OH)2 Cr(CO)3

Pd(PPh3)4

Pd(PPh3)4 NiBr2, (S)-PPFOMeb 11

89 [120]

12 90 [121]

86 [122]

13

ArMX Ar'Y

MX

Cat. Ar−Ar'

Entry Substrates Catalyst Yield (%) Reference

TABLE 10. (Continued)

aAryl electrophiles are arranged according to increasing order of priority determined by the Cahn–Ingold–Prelog rule.

bPPFOMe PPh2

C H Me

OMe Fe

MX OMe

MX OEt

MX Br

R

I MeO

Br

N O

N

H Me OMe

R = MgBr

ZnCl ZnCl B(OH)2

MX

B(OH)2

Ni(PPh3)Cl2

Ni(PPh3)Cl2

(CH3CN)2PdCl2

Pd(PPh3)4

Pd(PPh3)4, Na2CO3

Entry Substrates Catalyst Yield (%) Reference

55–79 [123]

1

36 35 39

[124]

[124]

[124]

2

73 [125]

3

TABLE 11. Pd- or Ni-Catalyzed Aryl–Aryl Coupling Providing Biaryls Containing Four Ortho Substituents

ArMX ArY Cat. Ar – Ar

9:

9:

REFERENCES

[1] R. C. Larock, inComprehensive Organic Transformations: A Guide to Functional Group Preparations, Wiley-VCH New York, 1999, Chap. 2, 77–128.

[2] G. H. Posner, Org. React., 1975, 22, 253– 400.

[3] M. F. Semmelhack, P. M. Helquist, and L. D. Jones, J. Am. Chem. Soc., 1971, 93, 5908.

[4] K. Tamao, K. Sumitani, and M. Kumada, J. Am. Chem. Soc., 1972, 94, 4374.

[5] R. J. P. Corriu and J. P. Masse, J. Chem. Soc. Chem. Commun., 1972, 144.

[6] M. Kumada, Pure Appl. Chem., 1980, 52, 669–679.

[7] K. Tamao, K. Sumitani, Y. Kiso, M. Zembayashi, A. Fujioka, S. Kodama, I. Nakajima, A. Minato, and M. Kumada, Bull. Chem. Soc. Jpn., 1976, 49, 1958.

[8] A. Sekiya and N. Ishikawa, J. Organomet. Chem., 1976, 118, 349.

[9] E. Negishi, A. O. King, and N. Okukado, J. Org. Chem., 1977, 42, 1821.

[10] E. R. Larson and R. A. Raphael, Tetrahedron Lett., 1979, 5041.

[11] E. Negishi, T. Takahashi, and A. O. King, Org. Synth;1985, 66, 67.

[12] N. Miyaura, T. Yanagi, and A. Suzuki, Synth. Commun., 1981, 11, 513.

[13] N. Miyaura and A. Suzuki, Chem. Rev., 1995, 95, 2457–2483.

[14] A. N. Kashin, I. G. Bumagina, N. A. Bumagin, and I. P. Beletskaya, Zh. Org. Khim., 1981, 17, 21.

[15] J. K. Stille, Angew. Chem. Int. Ed. Engl., 1986, 25, 508–524.

[16] V. Farina, V. Krishnamurthy, and W. J. Scott, Org. React., 1997, 50, 1–652.

[17] T. R. Hoye and M. Chen, J. Org. Chem., 1996, 61, 7940

MX OCH2Ph OCH2Ph O

OtBu

MX OBn N

BnO Bn

MX Br

Br PhH2CO

PhH2CO

TfO

OMe OAc

AcO MeO

OTf MgBr MgBr

B(OH)2

B(OH)2

Pd(acac)2

NiBr2, dppf

Pd(PPh3)4, Na2CO3

Pd(PPh3)4, Ba(OH)2

50 77

[126]

[127]

12 [128]

74 [129]

4

5

6

MX

Entry Substrates Catalyst Yield (%) Reference

TABLE 11. (Continued)

ArMX ArY Cat. Ar – Ar

aAryl electrophiles are arranged according to increasing order of priority determined by the Cahn–Ingold–Prelog rule.

9:

[18] M. R. Agharahimi and N. A. LeBel, J. Org. Chem., 1995, 60, 1856.

[19] S. P. Stanforth, Tetrahedron, 1998, 54, 263–303 (and references cited therein).

[20] G. P. Roth and C. E. Fuller, J. Org. Chem., 1991, 56, 3493.

[21] C. A. Quesnelle, O. B. Familoni, and V. Snieckus, Syn lett, 1994, 349.

[22] T. Oh-e, N. Miyaura, and A. Suzuki, J. Org. Chem., 1993, 58, 2201.

[23] V. Aranyos, A. M. Castnao, and H. Grennberg, Acta Chem. Scand.,1999, 53, 714.

[24] K. Koch, R. J. Chambers, and M. S. Biggers, Synlett, 1994, 347.

[25] S. Saito, S. Oh-tani, and N. Miyaura, J. Org. Chem., 1997, 62, 8024.

[26] J. A. Miller and R. P. Farrell, Tetrahedron Lett., 1998, 39, 6441.

[27] J. Huang and S. P. Nolan, J. Am. Chem. Soc., 1999, 121, 9889.

[28] X. Bei, H. W. Turner, W. H. Weinberg, and Anil S. Guram, J. Org. Chem.,1999, 64, 6797.

[29] J. Galland, M. Savignac, and J. Genet, Tetrahedron Lett., 1999, 40, 2323.

[30] D. Milstein and J. K. Stille, J. Am. Chem. Soc.,1979, 101, 4992.

[31] H. Ito, H. Sensui, K. Arimoto, K. Miura, and A. Hosomi, Chem. Lett., 1997, 639.

[32] Y. Okamoto, K. Yoshioka, T. Yamana, and H. Mori, J. Organomet. Chem., 1989, 369, 285.

[33] G. Marck, A. Villiger, and R. Buchecker, Tetrahedron Lett., 1994, 35, 3277.

[34] M. Hoshino, P. Degenkolb, and D. P. Curran, J. Org. Chem., 1997, 62, 8341.

[35] M. Sato, N. Miyaura, and A. Suzuki, Chem. Lett., 1989, 1405.

[36] N. A. Bumagin, A. B. Ponomaryov, and I. P. Beletskaya, J. Organomet. Chem., 1985, 291, 129.

[37] M. Catellani, G. Chiusoli, and V. Fornasari, Gazz. Chim. Ital., 1990, 120, 779.

[38] M. Kosugi, T. Ishikawa, T. Nogami, and T. Migita, Nippon Kagaku Kaishi, 1985, 520.

[39] D. P. G. Hamon, R. A. Massy-Westropp, and J. L. Newton, Tetrahedron, 1995, 51, 12645.

[40] S. Chamoin, S. Houldsworth, C. G. Kruse, W. I. Bakker, and V. Snieckus, Tetrahedron Lett., 1998, 39, 4179.

[41] N. A. Bumagin, V. V. Bykov, and I. P. Beletskaya, Izv. Akad. Nauk. SSSR Ser. Khim., 1989, 38, 2394.

[42] S. K. Kang, J. S. Kim, S. K. Yoon, K. H. Lin, and S. S. Yoon, Tetrahedron Lett., 1998, 39, 3011.

[43] N. A. Bumagin and E. V. Luzikova, J. Organomet. Chem., 1997, 532, 271.

[44] N. E. Leadbeater and S. M. Resouly, Tetrahedron, 1999, 55, 11889.

[45] V. V. Bykov and N. A. Bumagin, Russ. Chem. Bull.,1997,46, 1344.

[46] R. Frenette and R. W. Friesen,Tetrahedron Lett., 1994, 35, 9177.

[47] S. Chamoin, S. Houldsworth, and V. Snieckus, Tetrahedron Lett., 1998, 39, 4175.

[48] J. P. Genêt, E. Blart, and M. Savignac, Synlett, 1992, 715.

[49] N. S. Kozlov, R. D. Sauts, and V. M. Prishchipenko, Dokl. Akad. Nauk SSSR, 1990, 311, 1133.

[50] L. A. Paquette, J. C. Lanter, and J. N. Johnston, J. Org. Chem., 1997, 62, 1702.

[51] E. Negishi, T. Takahashi, and K. Akiyoshi, J. Organomet. Chem., 1987, 334, 181.

[52] K. Yoon and D. Y. Son, Org. Lett., 1999, 1, 423.

[53] J. Clayden, J. J. A. Cooney, and M. Julia, J. Chem. Soc. Perkin Trans. 1, 1995, 7.

[54] J. Clayden and M. Julia, J. Chem. Soc. Chem. Commun., 1993, 1682.

[55] Y. Uozumi, H. Danjo, and T. Hayashi, J. Org. Chem., 1999, 64, 3384.

[56] Y. Hatanaka, K. Goda, Y. Okahara, and T. Hiyama, Tetrahedron, 1994, 50, 8301.

[57] R. S. Varma and K. P. Naicker, Tetrahedron Lett., 1999, 40, 439.

[58] D. Kaufmann, Chem. Ber., 1987, 120, 901.

[59] K. Hirabayashi, T. Kondo, F. Toriyama, Y. Nishihara, and A. Mori, Bull. Chem. Soc. Jpn., 2000,73, 749.

[60] S. E. Denmark and Z. Wu, Org. Lett., 1999, 1, 1495.

[61] S. K. Kang, T. T. Baik, and S. Y. Song, Synlett, 1999, 327.

[62] U.S. Patent 5859247, January 12, 1999(CAS 130:110408).

[63] S. K. Kang, H. W. Lee, S. B. Jang, and P. S. Ho, J. Org. Chem., 1996,61, 4720.

[64] N. A. Bumagin and V. V. Bykov, Zh. Org. Khim., 1990, 66, 1981.

[65] I. Klement, M. Rottlọnder, C. E. Tucker, T. N. Majid, P. Knochel, P. Venegas, and G. Cahiez, Tetrahedron, 1996, 52, 7201.

[66] S. R. Piettre and S. Baltzer, Tetrahedron Lett., 1997, 38, 1197.

[67] D. W. Old, J. P. Wolfe, and S. L. Buchwald, J. Am. Chem. Soc., 1998, 120, 9722.

[68] W. Müeller, P. Kipfer, D. A. Lowe, and S. Urwyler, Helv. Chim. Acta, 1995, 78, 2026.

[69] W. Mueller, D. A. Lowe, H. Neijt, S. Urwyler, P. L. Herrling, D. Blaser, and D. Seebach, Helv. Chim. Acta, 1992, 75, 855.

[70] T. R. Kelly, G. J. Bridger, and C. Zhao, J. Am. Chem. Soc., 1990, 112, 8024.

[71] Y. Yang, A. R. Martin, D. L. Nelson, and J. Regan, Heterocycles, 1992, 34, 1169.

[72] M. Hird, A. J. Seed, and K. J. Toyne, Synlett, 1999, 438.

[73] D. De and D. J. Krogstad, Org. Lett.,2000, 2, 879.

[74] E. Wenkert, E. L. Michelotti, C. S. Swindell, and M. Tingoli, J. Org. Chem., 1984, 49, 4894.

[75] D. Badone, M. Baroni, R. Cardamone, A. Ielmini, and U. Guzzi, J. Org. Chem., 1997, 62, 7170.

[76] S. W. Wright, D. L. Hageman, and L. D. McClure, J. Org. Chem., 1994, 59, 6095.

[77] M. Park, J. R. Buck, and C. J. Rizzo, Tetrahedron, 1998, 54, 12707.

[78] N. A. Bumagin, A. Nikolai, and V. V. Bykov, Tetrahedron, 1997, 53, 14437.

[79] Japanese Patent 06107646, April 19, 1999(CAS 121:134105).

[80] N. A. Bumagin, A. F. Nikitina, and I. P. Beletskaya, Zh. Org. Khim., 1996, 32, 1861.

[81] K. Takagi, Chem. Lett., 1993, 469.

[82] G. S. Reddy and W. Tam, Organometallics, 1984, 3, 630.

[83] T. Katayama and M. Umeno, Chem. Lett.,1991, 2073.

[84] A. Minato, K. Tamao, T. Hayashi, K. Suzuki, and M. Kumada, Tetrahedron Lett., 1980, 21, 845.

[85] R. B. Miller and S. Dugar, Organometallics, 1984, 3, 1261.

[86] C. W. Holzapfel and C. Dwyer, Heterocycles, 1998, 48, 1513.

[87] A. F. Littke, C. Dai, and G. C. Fu, J. Am. Chem. Soc., 2000, 122, 4020.

[88] WO Patent O9640684, December 19, 1996(CAS 126:131464).

[89] A. Palmgren, A. Thorarensen, and J. Bởckvall, J. Org. Chem., 1998, 63, 3764.

[90] Y. Sugihara, H. Takeda, and J. Nakayama, Eur. J. Org. Chem., 1999, 597.

[91] J. A. Miller and R. P. Farrell, Tetrahedron Lett., 1998, 39, 7275.

[92] J. P. Wolfe, R. A. Singer, B. H. Yang, and S. L. Buchwald, J. Am. Chem. Soc., 1999, 121, 9550.

[93] M. Ueda, A. Saitoh, S. Oh-tani, and N. Miyaura, Tetrahedron, 1998, 54, 13079.

[94] C. von dem Bussche-Hünnefeld, D. Bühring, C. B. Knobler, and D. J. Cram, Chem.

Commun., 1995, 1085.

[95] J. C. Anderson and H. Namli, Synlett, 1995, 765.

[96] T. Vinod and H. Harti, J. Org. Chem., 1990, 55, 881.

[97] T. R. Kelly, J. P. Sestelo, and I. Tellitu, J. Org. Chem., 1998, 63, 3655.

[98] K. Manabe, K. Okamura, T. Date, and K. Koga, J. Org. Chem., 1993, 58, 6692.

[99] T. Kamikawa and T. Hayashi, Synlett,1997, 163.

[100] J. C. Adrian, Jr. and C. S. Wilcox, J. Am. Chem. Soc., 1989, 111, 8055.

[101] S. Jinno, T. Okita, and K. Inouye, Bioorg. Med. Chem. Lett., 1999, 9, 1029.

[102] T. Choshi, T. Sada, H. Fujimoto, C. Nagayama, E. Sugino, and S. Hibino, Tetrahedron Lett., 1996, 37, 2593.

[103] D. Li, B. Zhao, and E. J. LaVoie, J. Org. Chem., 2000, 65, 2802.

[104] Y. Ikoma, K. Ando, Y. Naoi, T. Akiyama, and A. Sugimori, Synth. Commun., 1991, 21, 481.

[105] C. Pascal, J. Dubois, D. Gúenard, L. Tchertanov, S. Thoret, and F. Guéritte, Tetrahedron, 1998, 54, 14737.

[106] M. Iwao, H. Takehara, S. Furukawa, and M. Watanabe, Heterocycles, 1993, 36, 1483.

[107] M. Iwao, H. Tekehara, S. Obata, and M. Watanabe, Heterocycles, 1994, 38, 1717.

[108] D. A. Widdowson and Y. Zhang,Tetrahedron, 1986, 42, 2111.

[109] T. R. Kelly, A. Garcớa, F. Lang, J. J. Walsh, K. V. Bhaskar, M. R. Boyd, R. Gửtz, P. A.

Keller, R. Walter, and G. Bringmann, Tetrahedron Lett., 1994, 35, 7621.

[110] T. R. Hoye, M. Chen, L. Mi, and O. P. Priest, Tetrahedron Lett., 1994, 35, 8747.

[111] K. C. Nicolaou, M. Takayanagi, N. F. Jain, S. Natarajan, A. E. Koumbis, T. Bando, and J. M. Ramanjulu, Angew. Chem. Int. Ed. Engl., 1998, 37, 2717.

[112] M. Uemura, H. Nishimura, K. Kamikawa, K. Nakayama, and Y. Hayashi, Tetrahedron Lett., 1994, 35, 1909.

[113] K. Kamikawa, T. Watanabe, and M. Uemura, Synlett, 1995, 1040.

[114] T. Watanabe, N. Miyaura, and A. Suzuki, Synlett, 1992, 207.

[115] J. M. Saá, G. Martorell, and A. Garcia-Raso, J. Org. Chem., 1992, 57, 678.

[116] J. M. Saá and G. Martorell, J. Org. Chem., 1993, 58, 1963.

[117] G. Bringmann, R. Gotz, P. A. Keller, R. Walter, P. Henschel, M. Schaffer, M. Stablein, T. R.

Kelly, and M. R. Boyd, Heterocycles, 1994, 39, 503.

[118] G. Bringmann, R. Gửtz, S. Harmsen, J. Holenz, and R. Walter, Liebigs Ann. Chem., 1996, 2045.

[119] M. Uemura, A. Daimon, and Y. Hayashi, Chem. Commun., 1995, 1943.

[120] T. Hayashi, K. Hayashizaki, and Y. Ito, Tetrahedron Lett., 1989, 30, 215.

[121] T. Watanabe and M. Uemura, Chem. Commun., 1998, 871.

[122] K. Kamikawa, T. Watanabe, and M. Uemura, J. Org. Chem.,1996, 61, 1375.

[123] S. Miyano, S. Okada, T. Suzuki, S. Handa, and H. Hashimoto, Bull. Chem. Soc. Jpn., 1986, 59, 2044.

[124] S. Coleman and E. B. Grant, Tetrahedron Lett., 1993, 34, 2225.

[125] H. Brunner, G. Olschewski, and B. Nuber,Synthesis, 1999, 429.

[126] T. Frejd and T. Klingstedt, Acta Chem. Scand.,1989, 43, 670.

[127] M. G. Johnson and R. J. Foglesong, Tetrahedron Lett., 1997, 38, 7001.

[128] S. L. Colletti and R. L. Halterman, Tetrahedron Lett., 1989, 30, 3513.

[129] G. Bringmann, R. Gửtz, P. A. Keller, R. Walter, M. R. Boyd, F. Lang, A. Garcia, J. J. Walsh, I. Tellita, K. V. Bhaskan, and T. R. Kelly, J. Org. Chem., 1998, 63, 1090.

Aryl–Alkenyl, and Alkenyl–Alkenyl Coupling Reactions

SHOUQUAN HUO and EI-ICHI NEGISHI

A. INTRODUCTION

The synthesis of alkene-substituted arenes by cross-coupling can, in principle, be achieved either by the reaction of alkenylmetals with aryl halides and related electro- philes or by that of arylmetals with alkenyl electrophiles. For the sake of simplicity, the former reaction is termed the alkenyl – aryl coupling, while the latter is termed thearyl – alkenyl couplingin this Handbook. Similar terms may be devised by linking the carbon groups of the organometal and organic electrophile with a dash in this order.

There are four classes of the Csp2– Csp2 coupling reactions involving alkenyl and/or aryl derivatives. Of the four, the aryl – aryl coupling is discussed in Sect. III.2.5. In this section, the other three combinations of the Csp2– Csp2 coupling reactions, that is, alkenyl – aryl, aryl – alkenyl, and alkenyl – alkenyl couplings, are discussed in the order indicated above.

The development of general and satisfactory methods for the Csp2– Csp2 coupling is of relatively recent origin. This may, in part, be attributable to the general inability of Grignard reagents and organolithiums to react with alkenyl and aryl electrophiles for Carbon – Carbon bond formation. Although the reaction of Grignard reagents with organic halides was shown to be catalyzed by various late transition metal compounds (the Kharasch reaction) in the 1950s,[1] it was not until the early 1970s that the applicability of this catalytic method was extended to the cross-coupling involving alkenyl and aryl halides catalyzed by Ag,[2],[3] Fe,[4] and other late transition metal complexes. However, the feasibility of achieving the Csp2– Csp2 coupling by the Kharasch reaction was virtually never demonstrated in these early investigations. In the meantime, the stoichiometric reaction of organocoppers with organic halides was extensively developed since the 1960s as a generally applicable cross-coupling method that is applicable to those cases involving alkenyl and aryl electrophiles. Even so, only several examples of the Cu-promoted Csp2– Csp2coupling summarized in Scheme 1can be found in an extensive and seemingly thorough review published in 1975.[5]Thus, despite their synthetic potential, they did not lead to the widespread use of the Csp2– Csp2coupling.

335 Handbook of Organopalladium Chemistry for Organic Synthesis, Edited by Ei-ichi Negishi

ISBN 0-471-31506-0 © 2002 John Wiley & Sons, Inc.

A few critical findings reported in the 1970s laid the foundation for the current wide- spread use of the Ni- or Pd-catalyzed methods for the Csp2– Csp2 coupling. Following the discovery of the cross-coupling reaction of the Grignard reagents with alkenyl and aryl halides catalyzed by Ni–phosphine complexes in the early 1970s,[12],[13]the feasibility of developing one-pot hydrometallation (or carbometallation) – cross-coupling tandem processes involving Al and Zr and a few notable advantages of Pd catalysts over Ni cata- lysts used in conjunction with Mg, Zn, Al, Zr, and others were demonstrated in the mid 1970s.[14]–[18] In the meantime, Pd-catalyzed reaction of Grignard reagents was also reported.[19],[20] The use of homogeneous Ni – phosphine and Pd – phosphine complexes appears to be the single most critical factor distinguishing this new methodology from the previous ones. Some prototypical examples of Ni- or Pd-catalyzed Csp2– Csp2 coupling reactions reported during this period are shown in Schemes 24.

CuLi Br

Cu

I

OMe

CuLi Br

Br CuLi

CuLi O

O

CO2Me Cl

Me CuLi

Br

OMe

Me

O O

CO2Me Alkenylaryl coupling

2 + [6]

+ [7]

85%

65%

Arylalkenyl coupling

2

2

73%

58%

[8]

+ [9]

+

Alkenylalkenyl coupling

2

27%

[11]

+

2 [10]

+

55%

Scheme 1

RC CH

RC CH

EtC CEt

Me MgBr BuC CBu

HZrCp2Cl HAliBu2

HZrCp2Cl HAliBu2

ArX

AliBu2 Et H Et

ZrCp2Cl Bu H Bu

AliBu2 H H R

n-Bu n-Bu R n-Pent n-Pent EtO

ZrCp2Cl H H R

R n-Bu n-Bu

ArX PhI PhI ArX PhBr

Ar PhBr

Bu H Bu

Me Ar

Et H Et

Me Ar H H R

Ar H H R Alkenylaryl coupling

Yields (%) 85

1-NaphBr 93

c-Hex p-MeC6H4Br 75

ArX cat. Ni(PPh3)4

[14]

ArX cat. Ni(PPh3)4

[16]

Yields (%) 96

1-NaphBr 70

99

p-MeOC6H4I 80

92 p-MeO2CC6H4Br

5% Pd(PPh3)4, ZnCl2 (1 equiv)

[18]

m-MeC6H4I

PhI

[18]

5% Pd(PPh3)4, ZnCl2 (1 equiv)

88%, >97% E

80%, >97% E

Yield (%) 85 p-ClC6H4Br 68

1-NaphBr 78

cat. Cl2Ni(dmpe) [ 21]

+

Scheme 2

ArLi ArLi

PhMgX ArMgX

PhMgBr

PhMgBr

PhMgBr

PhMgBr PhMgBr ArMgBr

Ph Br

Br Ph

Cl2C CH2

Cl Cl

Cl Cl

H2C CHCl

Cl

Hex I

Br Ph

Cl Cl

Ar Ph

Ph Ar

NiX2

NiX2

PhMgX

I Hex

Ar ArHC CH2

Ph2C CH2

Ph PhHC CHCl

PhHC CHCl

Ph Hex

Hex Ph

Ar Cl

Ar Ph Arylalkenyl coupling

[13] 50−75%

40−50%

+

+

[13]

78−95%

82%

91%, Z/E = 90 : 10

100%, Z/E = 80 : 20

65%

cat. Ni +

+ cat. Ni

cat. Ni

cat. Ni +

+

cat. Ni +

82%, >97% E

80%, >97% Z +

+

cat. Pd(PPh3)4

cat. Pd(PPh3)4

Yield (%)

98 100%E

E

92 100%

82 100%E

98 99%Z

96 100%Z

o-Me2NCH2C6H4

p-MeC6H4 o-Me2NC6H4

Selectivity p-MeC6H4

o-Me2NC6H4 +

+

[12],[21]

[21]

[21]

[21]

[21]

Pd(PPh3)4

[20]

Pd(PPh3)4

[20]

[22]

[22]

Scheme 3

R1C CH

AlMe2 H Me

R1 R1C CH

R1C CH AliBu2 H H R1

ZrCp2Cl H H R1

HAliBu2

HZrCp2Cl

R2 H H

I R2 H H

I

H R2 H

I

Br

R2 H H

I H H R1

H H

R2 H H R1

H R2

H

H H R1

H R2

H Ni(PPh3)4

Ni(PPh3)4 Pd(PPh3)4

Pd(PPh3)4

H Me

R1

H H

H

H Me

R1

H R2

H Alkenylalkenyl coupling

Catalyst Yield (%) Selectivity

70 95% E,E

74 >99% E,E

90% E,Z

>99% E,Z 55

55 5% Cat.

5% Cat.

[15]

R1 = n-C5H11 [15]

R2 = n-C4H9

Me3Al cat. Cp2ZrCl2

91%, >97% E, E

73%, >99% E

65%, >97% E,E 5% Pd(PPh3)4

[16]

[18]

[18]

5% Pd(PPh3)4

ZnCl2 (1 equiv)

5% Cl2Pd(PPh3)2 + DIBAH ZnCl2 (1 equiv)

R1 = n-C5H11, R2 = n-C4H9

MgBr

MgBr CH3

Br Ph

Br CH3

Pd(PPh3)4 Ph

H3C

CH3 [19, 20]

+ 81%, 99% E

79%

cat. Ni [21]

+

Scheme 4 (Continued)

Over the past two decades, Pd- or Ni-catalyzed cross-coupling, especially Pd- catalyzed version, has become one of the most common methods (possibly the most common method) for highly selective synthesis of arylated alkenes, conjugated dienes, conjugated enynes (Sect. III.2.8), and other related alkene derivatives. In addition to Mg, Zn, Al, and Zr used since the 1970s,[23] several other metals including B,[24] Si,[25]

Sn,[26],[27]and Cu[28]–[33]have been extensively employed since around 1980.

In the following three subsections, the alkenyl–aryl (Sect. B), aryl–alkenyl (Sect. C), and alkenyl – alkenyl (Sect. D) coupling reactions catalyzed by Pd complexes are dis- cussed primarily in the forms of schemes and tables. Some related Ni-catalyzed reactions are also presented, as deemed appropriate.

Alkenylmetals and alkenyl electrophiles may be classified into eight structural types according to the number and positions of the substituents relative to the metal or the electrophilic leaving group in the alkenyl group (Scheme 5). The entries in the tables are arranged according to the alkenyl structural types in the order shown in Scheme 5 except in Tables 2and 8, which are arranged according to the aryl structural types, and their priority order is as detailed in Sect. III.2.5. Within the same structural type, the alkenyl groups are listed in the following order of the substituent type: alkyl, alkenyl, aryl, and alkynyl, and the carbon numbers are used as the tie breakers. Heteroatom

Hex I

I Hex

R H

MgBr R′

Hex

R′ H

R Hex

R′ H

R R H H CH3

H H CH3

H H

H H CH3

CH3 cat. Pd(PPh3)4

cat. Pd(PPh3)4

[22]

Yield (%)

Selectivity (%) 81

82 87

>97 E

>97 E

>97 Z,E

75 >97 Z 84 >97 Z 79

R′

Scheme 4 (Continued)

Vinyl

Monosubstituted

Disubstituted

Trisubstituted

CH CH2 H

H

R H

R

H R

H H

H R2

R1 R1

H

R2 R1

R2 H

R1 R3 R2

((E)- -), ((Z)- -),

( , -), (cis- , -), (trans- , -)

β β (

β β′ α β α β

α-)

Scheme 5

group-containing alkenyl groups are listed in increasing order of priority determined by the Cahn–Ingold–Prelog rule. Alkenylmetals containing the same alkenyl group are fin- ally arranged according to the group numbers of the metal countercations, that is, Li, Mg, Zn, B, Al, Si, Sn, Cu, Zr, and so on, while the alkenyl electrophiles containing the same alkenyl group are arranged according to decreasing number of the group numbers of alkenyl-bound atoms, that is, halogens (I, Br, Cl, F), O, S, N, P, and so on.

Một phần của tài liệu Handbook of organopalladium chemistry for organic synthesis vol 1 negishi (Trang 345 - 358)

Tải bản đầy đủ (PDF)

(1.650 trang)