SCOPE AND LIMITATION OF THE CYCLIZATION

Một phần của tài liệu Handbook of organopalladium chemistry for organic synthesis vol 1 negishi (Trang 1644 - 1650)

The cyclization of 4-substituted 5-hexenyl iodides proceeds well, leading to cyclopentylz- inc iodides that can be trapped with various electrophiles such as 3-iodo-2-cyclohexenone, iodine, acid chlorides, allylic halides, and ethyl propiolate (carbocupration) (Scheme 7).[4]

Various substitution patterns allow a successful cyclization. Also, a range of functional groups like esters or nitriles are tolerated in the ring closure (Scheme 8).

The presence of an oxygen functionality (O-centered leaving group) is also compatible with the reaction conditions and the 2-pivaloyloxyalkyl iodide 9leads after allylation to the expected cyclopentane derivative 10(Scheme 9).[4]

Scheme 8 I

Ph

Ph

O

ZnI Ph

O

I I2

Br CO2Et

CO2Et

Ph O

I Ph

CO2Et Ph

Ph

CO2Et

73%

90%

>98% trans PdCl2(dppf)

1.5 mol %

1. CuCN • 2 LiCl 2.

1. CuCN • 2 LiCl 2.

64% >95% E

1. CuCN • 2 LiCl 2. PhCOCl

2.

76%

Et2Zn, THF

25 °C, 2h 1. CuCN • 2 LiCl

Scheme 7

I

FG

Bu I

PdCl2(dppf) 1.5 mol % 25 °C, 2 h

FG

ZnI

Bu ZnI

Br

Ph NO2

FG

NO2 Bu Ph

81%

2.

FG = CN 83%

FG = OCOt-Bu 62%

CO2Et Et2Zn (2 equiv)

PdCl2(dppf) 1.5 mol % 25 °C, 2 h Et2Zn (2 equiv)

1. CuCN • 2 LiCl

2.

1. CuCN • 2 LiCl CO2Et

R I

R I

Br COOEt

I

OAc

Cl OAc

OAc

AcO R

R R = (CH2)4OAc, Et, (CH2)3CN

75−87%

cis/trans ca. 78:22

R = (CH2)4OAc, (CH2)3CN 51−71%

cis/trans ca. 78:22

52%

cis/trans 77:23 PdCl2(dppf)

1.5 mol % 25 °C, 2 h Et2Zn (2 equiv)

PdCl2(dppf) 1.5 mol % 25 °C, 2 h Et2Zn (2 equiv)

PdCl2(dppf) 1.5 mol % 25 °C, 2 h Et2Zn (2 equiv)

2.

1. CuCN • 2 LiCl

2.

1. CuCN • 2 LiCl

2.

1. CuCN • 2 LiCl

CO2Et

CO2Et CO2Et

E I E

R I

Br

I

O E

E

R

O E = CO2Et

CO2Et 73%

E = CO2Et

R = Me, Et, c-Hex

62−81%

cis/trans ca. 70:30 PdCl2(dppf)

1.5 mol % 25 °C, 2 h Et2Zn (2 equiv)

PdCl2(dppf) 1.5 mol % 25 °C, 2 h Et2Zn (2 equiv)

2.

1. CuCN • 2 LiCl

2.

1. CuCN • 2 LiCl CO2Et

Scheme 8 (Continued)

I

OPiv PdCl2(dppf) 1.5 mol % 25 °C, 2 h

OPiv ZnI

Br CO2Et

OPiv EtO2C

10 87%

2.

80:20

9

Et2Zn 1. CuCN • 2 LiCl

Scheme 9

I

I I

CO2Et

CO2Et CO2Et

Br COOEt

Br CO2Et

EtO2C PdCl2(dppf) cat.

25 °C, 2 h 2. CuCN • 2 LiCl

90% endo/exo80:20

25 °C, 2 h 2. CuCN • 2 LiCl

70% endo/exo80:20

1. Et2Zn (2 equiv) Ni(acac)2 (2.5 mol %) 0 °C, 3h

2. CuCN • 2 LiCl

n = 1: 85 % endo/exo 1:2 n = 2: 63 %endo/ exo 1:2 11

12 n = 1 13 n = 2

n

1. Et2Zn

1. Et2Zn PdCl2(dppf) cat.

Scheme 10

Various domino cyclizations using substrates like 1 113have been used successfully (Scheme 10).[4],[11]

The intramolecular addition to unsaturated esters was also possible. Best results are obtained with a t-amyl ester, which leads to a product that is less prone to undergo Claisen condensation. The same reaction is observed with the corresponding acetylenic ester (Scheme 11).[4]

CO2R

I

CO2Me

I PdCl2(MeCN)2 ( 1.5 mol % ) 25°C, 4 h

CH2CO2R

CO2Me R = Et

R = t-Am

−78 °C to 25 °C, 4 h

R = Et 57%

R = t-Am 74%

73%

Et2Zn, THF PdCl2(MeCN)2 (1.5 mol %)

Et2Zn ( 2 equiv), THF

Scheme 11

The reactivity observed with acetylenic ketones is more complex and the two iodoalkynyl ketones 14and 15behave in a different way (Scheme 12). Thus, the phenyl ketone 14undergoes carbopalladation of the triple bond followed by a reductive elimina- tion, furnishing the exo-alkylidenecyclopentane derivative 16. On the other hand, the methyl ketone 15undergoes, after carbopalladation, a subsequent Michael addition, lead- ing to the ketone 17in 52% yield.

COMe I

COPh I

PdCl2(MeCN)2 (1.5 mol %) 25 °C, 4 h PdCl2(MeCN)2 (1.5 mol %)

25 °C, 4 h

COMe Et

COPh Et 16 60%

14

17 52%

15

Et2Zn, THF

Et2Zn, THF

Scheme 12

OBn

CO2Me

I Br Et

OBn

CO2Me

CO2Me Et

O

Et 2. CuCN • 2 LiCl

3.

−55 °C, 48 h

86%

95:5

18 epijasmonate 19

1. Et2Zn, Ni(acac)2 cat THF, 25 °C

Scheme 13

The scope of the reaction can be extended to unsaturated alkyl bromides as substrates by using Ni(acac)2as a catalyst[12],[13]instead of Pd(II) complexes. The use of Ni(acac)2as a catalyst even with several polyfunctional alkyl iodides gives better results. Thus, in the key step for the synthesis of methyl epijasmonate 18, the alkyl iodide 19 undergoes a smooth cyclization using Ni(acac)2and Et2Zn (Scheme 13).[12]

Polyfunctional alkyl bromides have been cyclized with Ni(acac)2/Et2Zn for the construction of various heterocycles[13] as well as for the antitumor antibiotic ()-methylenolactocin 20. In this case, the alkyl bromide 21is cyclized and selectively oxidized to the aldehyde 22, which is converted in a standard way to the natural product 20(Scheme 14).

D. SUMMARY

1. The treatment of an alkyl iodide with Et2Zn in the presence of catalytic amounts of palladium(II) salts leads to the corresponding organozinc iodide.

2. The reaction proceeds via a radical intermediate and can be used to perform radical cyclizations affording five-membered rings. However, the products of these reactions are organozinc reagents, which can be reacted with a wide range of electrophiles.

3. The cyclizations are stereoselective following the Beckwith rules and allow the elaboration of highly substituted cyclopentane derivatives.

4. Domino cyclizations can be performed.

5. Unsaturated alkyl bromides can be used as substrates if the Pd(II) catalyst is replaced by Ni(acac)2.

REFERENCES

[1] M. J. Rozema, S. AchyuthaRao, and P. Knochel, J. Org. Chem., 1992, 57, 1956.

[2] M. J. Rozema, C. Eisenberg, H. Lütjens, R. Ostwald, K. Belyk, and P. Knochel, Tetrahedron Lett., 1993, 34, 3115.

[3] H. Stadtmỹller, R. Lentz, W. Dửrner, T. Stỹdemann, C. E. Tucker, and P. Knochel, J. Am.

Chem. Soc., 1993, 115, 7027.

[4] H. Stadtmüller, A. Vaupel, C. E. Tucker, T. Stüdemann, and P. Knochel, Chem. Eur. J., 1996, 2, 1204.

[5] A. V. Kramer, J. A. Labinger, J. S. Bradley, and J. A. Osborn, J. Am. Chem. Soc., 1974, 96, 7145.

[6] A. V. Kramer and J. A. Osborn, J. Am. Chem. Soc., 1974, 96, 7832.

[7] C. Amatore, E. Carré, A. Jutand, H. Tanaka, Q. Ren, and S. Torii, Chem. Eur. J., 1996, 2, 957.

[8] M. Chanon, Bull. Soc. Chim. Fr., 1982, 2, 197.

[9] D. P. Curran, in Comprehensive Organic Chemistry, Vol. 4, B. M. Trost and I. Fleming, Eds., Pergamon Press, New York, 1991, 779.

O OBu

Pent C SiMe3 O O ZnX

O OBu

Pent OHC

O O

Pent HO2C

O O

Pent HO2C

Pent O OBu

Me3Si

Br

2. O2, TMSCl THF, −5 °C

90 % acetone,

0 °C, 15 min

20: (−)-methylenolactocin 22 55%

21

1. Et2Zn, LiI Ni(acac)2

THF, 40 °C

Jones reagent

Scheme 14

Một phần của tài liệu Handbook of organopalladium chemistry for organic synthesis vol 1 negishi (Trang 1644 - 1650)

Tải bản đầy đủ (PDF)

(1.650 trang)