2.2.1431 TÀI LIỆU THAM KHẢO

Một phần của tài liệu luận án tiến sĩ nghiên cứu nâng cao chất lượng tái tạo hình học bề mặt các sản phẩm cơ khí bằng công nghệ quét 3d sử dụng thiết bị kinect v2 (Trang 182 - 190)

[1] Bành Tiến Long và Bùi Ngọc Tuyên (2013), “Lý thuyết tạo hình bề mặt và ứng dụng trong kỹ thuật cơ khí ”, Nhà xuất bản Giáo dục Việt Nam.

[2] Francesco Buonamici, Monica Carfagni, and Yary Volpe (2017), “Recent strategies for 3D reconstruction using Reverse Engineering: a bird’s eye view”, Advances on Mechanics, Design Engineering and Manufacturing, pp. 841-850, ISSN: 21954364, DOI: 10.1007/978-3-319-45781-9_84.

[3] Bành Tiến Long và Bùi Ngọc Tuyên (2005), “Xây dựng mặt lưới tam giác tối ưu từ đám mây điểm - Một bước cần thiết của kỹ thuật ngược”, Tạp chí Khoa học và Công nghệ, (50).

[4] Pierre Alain Fayolle and Alexander Pasko (2016), “An evolutionary approach to the extraction of object construction trees from 3D point clouds”, CAD Computer Aided Design, Vol. 74, pp. 1-17, ISSN: 00104485,

DOI: 10.1016/j.cad.2016.01.001.

[5] A. Kumar, P. K. Jain, and P.M. Pathak (2012), “Industrial Application of Point Cloud / STL Data for Reverse Engineering”, Daaam Interna- tional Scientific Book 2012, pp. 445-462, ISSN: 1726-9687, DOI: 10.2507 /daaam.scibook.2012.38.

[6] Nelson Max and Hyojin Kim (2015), “Optimization of Plane Fits to Image Segments in Multi-view Stereo”, pp. 1130-1136, DOI: 10.1109/W ACV.2015.155.

[7] C. Bernal, B. de Agustina, M.M. Marín, and A.M. Camacho (2013),

Performance Evaluation of Optical Scanner Based on blue LED Struc- tured Light”, Procedia Engineering, Vol. 63, pp. 591-598, ISSN: 18777058,

DOI: 10.1016/j.proeng.2013.08.261.

[8] Lê Quang Trà (2016), “Nghiên cứu đo biên dạng 3D của chi tiết bằng phương pháp sử dụng ánh sáng cấu trúc ”, Luận văn tiến sĩ, Trường Đại học Bách khoa Hà Nội.

[9] S. Burak Gokturk, Hakan Yalcin, and Cyrus Bamji (2004), “A time- of-flight depth sensor - System description, issues and solutions”, IEEE Computer Society Conference on Computer Vision and Pattern Recog- nition Workshops, Vol. 2004-Janua (January), ISSN: 21607516, DOI: 10.

1109/CVPR.2004.291.

[10] Miles Hansard, Seungkyu Lee, Ouk Choi, and Radu Horaud (2012),

Time of Flight Cameras : Principles , Methods , and Applications ”, Springer, ISBN: 9781447146582.

[11] Giovanna Sansoni and Franco Docchio (2004), “Three-dimensional opti- cal measurements and reverse engineering for automotive applications”,

Robotics and Computer-Integrated Manufacturing, Vol. 20 (5), pp. 359- 367, ISSN: 07365845, DOI: 10.1016/j.rcim.2004.03.001.

[12] Zhaohui Geng and Bopaya Bidanda (2017), “Review of reverse engi- neering systems - current state of the art”, Virtual and Physical Proto- typing, Vol. 12 (2), pp. 161-172, ISSN: 1745-2759, DOI: 10.1080/174527 59.2017.1302787.

[13] Martin Burston, Roberto Sabatini, Alessandro Gardi, and Reece Cloth- ier (2014), “Reverse engineering of a fixed wing Unmanned Aircraft

6-DoF model based on laser scanner measurements”, pp. 144-149, DOI: 10.1109/MetroAeroSpace.2014.6865910.

[14] Abdil Kus (2009), “Implementation of 3D optical scanning technology for automotive applications”, Sensors, Vol. 9 (3), pp. 1967-1979, ISSN:

14248220, DOI: 10.3390/s90301967.

[15] Svenja Kahn, Ulrich Bockholt, Arjan Kuijper, and Dieter W. Fellner (2013), “ Towards precise real-time 3D difference detection for industrial applications”, Computers in Industry, Vol. 64 (9), pp. 1115-1128, ISSN: 01663615, DOI: 10.1016/j.compind.2013.04.004.

[16] Thomas Hoegg, Damien Lefloch, and Andreas Kolb (2013), “ Time-of- Flight camera based 3D point cloud reconstruction of a car”, Computers in Industry, Vol. 64 (9), pp. 1099-1114, ISSN: 01663615, DOI: 10.1016/j .compind.2013.06.002.

[21] Carlo Dal Mutto, Pietro Zanuttigh, and Guido M Cortelazzo (2012),

Time-of-Flight Cameras and Microsoft Kinect™ ”, SpringerBriefs in Electrical and Computer Engineering, Springer US, Boston, MA, ISBN: 978-1-4614-3806-9.

[17] Robert Lange and Peter Seitz (2001), “Solid-state time-of-flight range camera”, IEEE Journal of Quantum Electronics, Vol. 37 (3), pp. 390-

397, ISSN: 00189197, DOI: 10.1109/3.910448.

[18] Moller Tobias, Kraft Holger, Frey Jochen, Albrecht Martin, and Lange Robert (2005), “Robust 3D Measurement with PMD Sensors”, Range

Imaging Day, Zủrich, Vol. 7 (Section 5), p. 8, DOI: ISBN3-906467-57-0.

[19] Benjamin Langmann, Klaus Hartmann, and Otmar Loffeld (2012),

Depth

camera technology comparison and performance evaluation”, ICPRAM 2012 - Proceedings of the 1st International Conference on Pattern Recog- nition Applications and Methods, Vol. 2, pp. 438-444, DOI: 10.5220/00 03778304380444.

[20] Sergi Foix, Guillem Alenya, and Carme Torras (2011), “Lock-in Time- of-Flight (ToF) Cameras: A Survey”, IEEE Sensors Journal, Vol. 11 (9), pp. 1917-1926, ISSN: 1530-437X, DOI: 10.1109/JSEN.2010.2101060.

[22] Kai Berger (2013), “A State Of the Art Report on Research in Multi- ple RGB-D sensor Setups”, Computer Vision and Pattern Recognition,

ISSN: 16113349.

[23] Péter Fankhauser, Michael Bloesch, Diego Rodriguez, Ralf Kaestner, Marco Hutter, and Roland Siegwart (2015), “Kinect v2 for mobile robot navigation: Evaluation and modeling”, Proceedings of the 17th Interna- tional Conference on Advanced Robotics, ICAR 2015, (July), pp. 388- 394, DQI: 10.1109/ICAR.2015.7251485.

[24] John Sell and Patrick O’Connor (2014), “The Xbox One System on a Chip and Kinect Sensor”, IEEE Micro, Vol. 34 (2), pp. 44-53, ISSN: 0272-1732, DQI: 10.1109/MM.2014.9.

[25] Elise Lachat, Hélène Macher, Tania Landes, and Pierre Grussenmeyer (2015), “Assessment and Calibration of a RGB-D Camera (Kinect v2 Sensor) Towards a Potential Use for Close-Range 3D Modeling”, Re- mote Sensing, Vol. 7 (10), pp. 13070-13097, ISSN: 2072-4292, DQI: 10.3 390/rs71013070.

[26] Timo Breuer, Christoph Bodensteiner, and Michael Arens (2014), “Low- cost commodity depth sensor comparison and accuracy analysis”, Electro- Optical Remote Sensing, Photonic Technologies, and Applications VIII;

and Military Applications in Hyperspectral Imaging and High Spatial Resolution Sensing II, Vol. 9250, 92500G, ISSN: 1996756X, DQI: 10.111 7/12.2067155.

[27] David Forsyth and Jean Ponce (2008), “Computer Vision: A Modern Approach”, Prentice Hall, ISBN: 0130851981.

[28] Juan R Terven and Diana M. Córdova-Esparza (2016), “Kin2. A Kinect 2 toolbox for MATLAB”, Science of Computer Programming, Vol. 130, pp. 97-106, ISSN: 01676423, DQI: 10.1016/j.scico.2016.05.009.

[29] Hamed Sarbolandi, Damien Lefloch, and Andreas Kolb (2015), “Kinect range sensing: Structured-light versus Time-of-Flight Kinect”, Computer Vision and Image Understanding, Vol. 139, pp. 1-20, ISSN: 10773142,

DQI: 10.1016/j.cviu.2015.05.006.

[30] Anh Nguyen and Bac Le (2013), “3D point cloud segmentation: A sur- vey”, 2013 6th IEEE Conference on Robotics, Automation and Mecha- tronics (RAM), (November), pp. 225-230, ISSN: 2158219X, DQI: 10.110 9/RAM.2013.6758588.

[31] Panagiotis Theologou, Ioannis Pratikakis, and Theoharis Theoharis (2015),

A comprehensive overview of methodologies and performance evalua- tion frameworks in 3D mesh segmentation”, Computer Vision and Im- age Understanding, Vol. 135, pp. 49-82, ISSN: 10773142, DQI: 10.1016/

j.cviu.2014.12.008.

[32] Alexander Agathos, Ioannis Pratikakis, Stavros Perantonis, Nikolaos Sa- pidis, and Philip Azariadis (2007), “ 3D Mesh Segmentation Methodolo- gies for CAD applications”, Computer-Aided Design and Applications, Vol. 4 (6), pp. 827-841, ISSN: 1686-4360, DOI: 10.1080/16864360.2007.1 0738515.

[33] Kuang-Hua Chang and Chienchih Chen (2011), “ 3D Shape Engineering and Design Parameterization”, Computer-Aided Design and Applica- tions, Vol. 8 (5), pp. 681-692, ISSN: 1686-4360, DOI: 10.3722/cadaps.20 11.681-692.

[34] Jun Wang, Dongxiao Gu, Zhanheng Gao, Zeyun Yu, Changbai Tan, and Laishui Zhou (2013), “Feature-Based Solid Model Reconstruction”, Journal of Computing and Information Science in Engineering, Vol. 13 (1), pp. 1-13, ISSN: 1530-9827, DOI: 10.1115/1.4023129.

[35] Jun Wang, Dongxiao Gu, Zeyun Yu, Changbai Tan, and Laishui Zhou (2012), “A framework for 3D model reconstruction in reverse engineer- ing”, Computers and Industrial Engineering, Vol. 63 (4), pp. 1189-1200,

ISSN: 03608352, DOI: 10.1016/j.cie.2012.07.009.

[36] Siyuan Cheng, Xiangwei Zhang, and Guoxin Yu (2009), “A hybrid sur- facing methodology for reverse engineering”, Virtual and Physical Pro- totyping, Vol. 4 (1), pp. 11-19, ISSN: 1745-2759, DOI: 10.1080/1745275 0802650470.

[37] Marie Anne Mittet, Tania Landes, and Pierre Grussenmeyer (2014), 2.2.1432 “Localization using RGB-D cameras orthoimages”, International Archives

of the Photogrammetry, Remote Sensing and Spatial Information Sci- ences - ISPRS Archives, Vol. 40 (5), pp. 425-432, ISSN: 16821750, DOI: 10.5194/isprsarchives-XL-5-425-2014.

[38] Mohamed Chafik Bakkay, Majdi Arafa, and Ezzeddine Zagrouba (2015),

Dense 3D SLAM in Dynamic Scenes Using Kinect”, Artificial Intelli- gence and Bioinformatics, Vol. 9117 (June), pp. 121-129, ISSN: 16113349,

DOI: 10.1007/978-3-319-19390-8_14.

[39] Cem Keskin, Furkan Kirac, Yunus Emre Kara, and Lale Akarun (2011),

Real time hand pose estimation using depth sensors”, Proceedings of the IEEE International Conference on Computer Vision, pp. 1228-1234,

DOI: 10.1109/ICCVW.2011.6130391.

[40] Clemens Amon and Ferdinand Fuhrmann (2014), “Evaluation of the Spatial Resolution Accuracy of the Face Tracking System for Kinect for Windows V1 and V2”, 6th Congress of Alps-Adria Acoustics Assosia- tion, (October), pp. 9-12.

[41] Cheng Tiao Hsieh (2015), “A New Kinect-Based Scanning System and its Application ”, Applied Mechanics and Materials, Vol. 764-765 (May 2015), pp. 1375-1379, DOI: 10.4028/www.scientific.net/amm.764-765.1 375.

[42] Hervé Lahamy, Derek Lichti, Mamdouh El-Badry, Xiaojuan Qi, Ivan Detchev, Jeremy Steward, and Mohammad Moravvej (2015), “Evalu- ating the capability of time-of-flight cameras for accurately imaging a cyclically loaded beam”, Videometrics, Range Imaging, and Applications XIII, Vol. 9528 (June), p. 95280V, ISSN: 1996756X, DOI: 10.1117/12.21 84838.

[43] Kourosh Khoshelham and Sander Oude Elberink (2012), “ Accuracy and Resolution of Kinect Depth Data for Indoor Mapping Applications ”, Sen- sors, Vol. 12 (2), pp. 1437-1454, ISSN: 1424-8220, DOI: 10.3390/s120201 437.

[44] Lin Yang, Longyu Zhang, Haiwei Dong, Abdulhameed Alelaiwi, and Abdulmotaleb El Saddik (2015), “Evaluating and improving the depth accuracy of Kinect for Windows v2”, IEEE Sensors Journal, Vol. 15 (8), pp. 4275-4285, ISSN: 1530437X, DOI: 10.1109/JSEN.2015.2416651.

[45] Oliver Wasenmiiller and Didier Stricker (2017), “ Comparison of Kinect V1 and V2 Depth Images in Terms of Accuracy and Precision”, Lecture Notes in Computer Science, Vol. 10117 (March), ed. by Chu-Song Chen, Jiwen Lu, and Kai-Kuang Ma, pp. 34-45, DOI: 10.1007/978-3-319-5442 7-4_3.

[46] H. Gonzalez-Jorge, P. Rodríguez-Gonzálvez, J. Martínez-Sánchez, D.

González-Aguilera, P. Arias, M. Gesto, and L. Díaz-Vilarino (2015),

Metrological comparison between Kinect i and Kinect II sensors”, Mea- surement: Journal of the International Measurement Confederation, Vol.

70, pp. 21-26, ISSN: 02632241, DOI: 10.1016/j.measurement.2015.03.04 2.

[47] Damien Lefloch, Rahul Nair, Frank Lenzen, Henrik Schafer, Lee Streeter,

Michael J. Cree, Reinhard Koch, and Andreas Kolb (2013), “Technical Foundation and Calibration Methods for Time-of-Flight Cameras”, Ar- tificial Intelligence and Bioinformatics, Vol. 8200 LNCS, pp. 3-24, ISSN: 16113349, DOI: 10.1007/978-3-642-44964-2_1.

[48] E. Lachat, H. Macher, M. A. Mittet, T. Landes, and P. Grussenmeyer (2015), “First experiences with kinect V2 sensor for close range 3D mod- elling”, International Archives of the Photogrammetry, Remote Sens- ing and Spatial Information Sciences - ISPRS Archives, Vol. 40 (5W4), pp. 93-100, ISSN: 16821750, DOI: 10.5194/isprsarchives-XL-5-W4-93-20 15.

[49] Hsi-Yung Feng, Yixin Liu, and Fengfeng Xi (2001), “ Analysis of digitiz- ing errors of a laser scanning system”, Precision Engineering, Vol. 25 (3), pp. 185-191, ISSN: 01416359, DOI: 10.1016/S0141-6359(00)00071-4.

[50] David Palousek, Milan Omasta, Daniel Koutny, Josef Bednar, Tomas Koutecky, and Filip Dokoupil (2015), “Effect of matte coating on 3D optical measurement accuracy”, Optical Materials, Vol. 40, pp. 1-9, ISSN: 09253467, DOI: 10.1016/j.optmat.2014.11.020.

[51] Radomír Mendrický (2018), “Impact of applied anti-reflective material on accuracy of optical 3D digitisation”, Materials Science Forum, Vol.

919, pp. 335-344, ISSN: 02555476, DOI: 10.4028/www.scientific.net/MS F.919.335.

[52] João Rogério Machado Pereira, Ivan de Lima e Silva Penz, and Fabio Pinto da Silva (2019), “Effects of different coating materials on three- dimensional optical scanning accuracy”, Advances in Mechanical Engi- neering, Vol. 11 (4), pp. 1-6, ISSN: 16878140, DOI: 10.1177/1687814019 842416.

[53] Bing Zhao, Ping An, Chao Liu, Jichen Yan, Chunhua Li, and Zhaoyang Zhang (2014), “Inpainting algorithm for Kinect depth map based on fore- ground segmentation”, Journal of Electronics, Vol. 31 (1), pp. 41-49,

ISSN: 19930615, DOI: 10.1007/s11767-013-3133-z.

[54] Wei Quan, Hua Li, Cheng Han, Yaohong Xue, Chao Zhang, Zhengang Jiang, and Hanping Hu (2018), “A depth enhancement strategy for kinect depth image”, (March 2018), ed. by Zhiguo Cao, Yuehuang Wang, and Chao Cai, p. 13, DOI: 10.1117/12.2283112.

[55] Victoria Hodge and Jim Austin (2004), “A Survey of Outlier Detection Methodologies”, Artificial Intelligence Review, Vol. 22 (2), pp. 85-126,

ISSN: 0269-2821, DOI: 10.1023/B:AIRE.0000045502.10941.a9.

[56] S Sotoodeh (2006), “ Outlier detection in laser scanner point clouds”, In-

ternational Archives of the Photogrammetry, Remote Sensing and Spa- tial Information Sciences, Vol. 36 (5), pp. 297-302, ISSN: 16821750, DOI: 10.3929/ethz-b-000037220.

[57] Yutao Wang and Hsi Yung Feng (2015), “ Outlier detection for scanned point clouds using majority voting”, CAD Computer Aided Design, Vol.

2.2.1433 62, pp. 31-43, ISSN: 00104485, DOI: 10.1016/j.cad.2014.11.004.

[58] S Sotoodeh (2007), “Hierarchical Clustered Outlier Detection in Laser Scanner Point Clouds”, ISPRS Workshop on Laser Scanning 2007, Vol.

XXXVI, pp. 383-388.

[59] Jun Wang, Kai Xu, Ligang Liu, Junjie Cao, Shengjun Liu, Zeyun Yu, and Xianfeng David Gu (2013), “ Consolidation of low-quality point clouds from outdoor scenes”, Eurographics Symposium on Geometry Process- ing, Vol. 32 (5), pp. 207-216, ISSN: 17278384, DOI: 10.1111/cgf.12187

2.2.1434 .

[60] Radu Bogdan Rusu, Zoltan Csaba Marton, Nico Blodow, Mihai Dolha, and Michael Beetz (2008), “ Towards 3D Point cloud based object maps for household environments”, Robotics and Autonomous Systems, Vol.

2.2.1435 56 (11), pp. 927-941, ISSN: 09218890, DOI: 10.1016/j.robot.2008.08.005.

[61] Xiaojuan Ning, Fan Li, Ge Tian, and Yinghui Wang (2018), “An effi- cient outlier removal method for scattered point cloud data”, PLoS ONE, Vol. 13 (8), pp. 1-22, ISSN: 19326203, DOI: 10.1371/journal.pone.02012 80.

[62] Paul J. Besl and McKay Neil D. (1992), “A method for registration of 3-D shapes”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 14 (2), pp. 239-256, ISSN: 0162-8828, DOI: 10.1109/34 .121791.

[63] Yang Chen and Gérard Medioni (1992), “ Object modelling by registration

of multiple range images”, Image and Vision Computing, Vol. 10 (3), pp. 145-155, ISSN: 02628856, DOI: 10.1016/0262-8856(92)90066-C.

[64] G. Blais and M.D. Levine (1995), “Registering multiview range data to create 3D computer objects”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 17 (8), pp. 820-824, ISSN: 01628828, DOI: 10.1109/34.400574.

[65] G.C. Sharp, S.W. Lee, and D.K. Wehe (2002), “ICP registration using invariant features”, IEEE Transactions on Pattern Analysis and Ma- chine Intelligence, Vol. 24 (1), pp. 90-102, ISSN: 01628828, DOI: 10.110 9/34.982886.

[66] Andrew W. Fitzgibbon (2003), “Robust registration of 2D and 3D point sets”, Image and Vision Computing, Vol. 21 (13-14), pp. 1145-1153,

ISSN: 02628856, DOI: 10.1016/j.imavis.2003.09.004.

[67] S. Rusinkiewicz and M. Levoy (2008), “Efficient variants of the ICP algorithm”, pp. 145-152, DOI: 10.1109/IM.2001.924423.

[68] Kok-Lim Low (2004), “ Linear Least-squares Optimization for Point-to- plane ICP Surface Registration”, Chapel Hill, University of North Car- olina, (February), pp. 2-4.

[69] Nguyễn Thị Kim Cúc (2018), “Nghiên cứu sử dụng phương pháp ánh sáng cấu trúc để nâng cao chất lượng đo chi tiết cơ khí ”, Luận văn tiến sĩ, Trường Đại học Bách khoa Hà Nội.

[70] Nguyễn Hoàng Tùng (2015), “Nghiên cứu phương pháp xác định profile bề mặt chi tiết gia công cơ khí bằng ảnh kỹ thuật số ”, Luận văn tiến sĩ, Trường Đại học Bách khoa Hà Nội.

[71] Dario Piatti and Fulvio Rinaudo (2012), “SR-4000 and CamCube3.0 Time of Flight (ToF) Cameras: Tests and Comparison”, Remote Sens- ing, Vol. 4 (4), pp. 1069-1089, ISSN: 2072-4292, DOI: 10.3390/rs404106 9.

[72] Tomas Akenine-Moller, Eric Haines, Naty Hoffman, Angelo Pesce, Micha

l Iwanicki, and Sebastien Hillaire (2018), “Real-Time Rendering”, Fourth, CRC Press, p. 1178, ISBN: 9781138627000.

[73] S.K. Nayar, K. Ikeuchi, and T. Kanade (1991), “Surface reflection: phys- ical and geometrical perspectives”, IEEE Transactions on Pattern Anal- ysis and Machine Intelligence, Vol. 13 (7), pp. 611-634, ISSN: 01628828,

DOI: 10.1109/34.85654.

[74] Yutao Wang and Hsi Yung Feng (2014), “ Modeling outlier formation in scanning reflective surfaces using a laser stripe scanner”, Measure- ment: Journal of the International Measurement Confederation, Vol. 57, pp. 108-121, ISSN: 02632241, DOI: 10.1016/j.measurement.2014.08.010.

[75] Jae S. Lim (1990), “ Two-Dimensional Signal and Image Processing ”, Prentice-Hall, Inc., ISBN: 0139353224.

[76] Christophe Leys, Christophe Ley, Olivier Klein, Philippe Bernard, and Laurent Licata (2013), “Detecting outliers: Do not use standard devia- tion around the mean, use absolute deviation around the median”, Jour- nal of Experimental Social Psychology, Vol. 49 (4), pp. 764-766, ISSN: 00221031, DOI: 10.1016/j.jesp.2013.03.013.

[77] Jeff Miller (1991), “Short Report: Reaction Time Analysis with Outlier Exclusion: Bias Varies with Sample Size”, The Quarterly Journal of Experimental Psychology Section A, Vol. 43 (4), pp. 907-912, ISSN: 0272-4987, DOI: 10.1080/14640749108400962.

[78] H. Golnabi and A. Asadpour (2007), “Design and application of in- dustrial machine Vision systems”, Robotics and Computer-Integrated Manufacturing, Vol. 23 (6), pp. 630-637, ISSN: 07365845, DOI: 10.1016/

j.rcim.2007.02.005.

[79] Julio Molleda, Rubén Usamentiaga, Daniel F. García, Francisco G.

Bulnes, Adrián Espina, Bassiru Dieye, and Lyndon N. Smith (2013),

An improved 3D imaging system for dimensional quality inspection of rolled products in the metal industry”, Computers in Industry, Vol. 64 (9), pp. 1186-1200, ISSN: 01663615, DOI: 10.1016/j.compind.2013.05.00 2.

[80] Jing Xu, Ning Xi, Chi Zhang, Quan Shi, and John Gregory (2011),

Real-time 3D shape inspection system of automotive parts based on structured light pattern”, Optics & Laser Technology, Vol. 43 (1), pp. 1- 8, ISSN: 00303992, DOI: 10.1016/j.optlastec.2010.04.008.

[81] Michael E. Wall, Andreas Rechtsteiner, and Luis M. Rocha, “Singular Value Decomposition and Principal Component Analysis”, in: A Prac- tical Approach to Microarray Data Analysis, ed. by Daniel P. Berrar, Werner Dubitzky, and Martin Granzow, Boston: Kluwer Academic Pub- lishers, 2003, pp. 91-109, ISBN: 1-4020-7260-0, DOI: 10.1007/0-306-4781 5-3 5.

Một phần của tài liệu luận án tiến sĩ nghiên cứu nâng cao chất lượng tái tạo hình học bề mặt các sản phẩm cơ khí bằng công nghệ quét 3d sử dụng thiết bị kinect v2 (Trang 182 - 190)

Tải bản đầy đủ (DOCX)

(208 trang)
w