Công suất cho phép tối đa Pp

Một phần của tài liệu Đồ án tốt nghiệp thiết kế anten dẹt cấu trúc xoắn, tiếp điện dùng đường truyền vi dải (Trang 62 - 84)

Việc tính toán công suất cho phép tối đa của đường vi dải phức tạp hơn. Điện áp đỉnh có thể đặt vào đường vi dải mà không gây ra đánh thủng điện môi xác định công suất cho phép tối đa (Peak Power Handling Capability, PPHC). Nếu Z0 là trở kháng đặc trưng của đường vi dải và V0 là điện áp cực đại mà đường vi dải có thể chịu đựng được, năng lượng cực đại được cho bởi:

Pp = V02/(2Z0) (3.24) Các chất nền dày có thể chịu đượng điện áp cao hơn. Do đó, các đường truyền có trở kháng đặc trưng thấp và các đường truyền có chất nền dày sẽ cho công suất cho phép tối đa lớn hơn.

Cường độ trường cực đại cho vật liệu điện môi (dielectric strength) của vật liệu chất nền, cũng như cường độ trường cực đại cho không khí, là các tham số quan trọng. Cường độ đánh thủng của không khí khô xấp xỉ 30 kV/cm. Do đó, điện trường cực đại gần cạnh của dải dẫn phải nhỏ hơn 30 kV/cm. Để tránh đánh thủng không khí gần cạnh của dải dẫn điện, thì cạnh của dải dẫn điện nên được sơn một lớp sơn (có tính chất điện môi), lớp sơn này có cùng hằng số điện môi như chất nền và là vật liệu không tổn hao. Cường độ trường cực đại cho các điện môi khác nhau cũng được liệt kê trong bảng 3.1.

Khóa luận tốt nghiệp đại học Ngành: Thông tin vô tuyến

MÔ PHỎNG, CHẾ TẠO VÀ ĐO ĐẠC CÁC THAM SỐ

CỦA ANTEN

CHƯƠNG 4

Tóm tt

Khóa luận sử dụng phần mềm Ansoft HFSS phiên bản 9.1 để mô phỏng cấu trúc anten được thiết kế. Phần đầu chương giới thiệu về công cụ dùng để mô phỏng HFSS, phần phụ lục đưa ra một số chú ý khi thiết lập các tham số quan trọng trước khi tiến hành phân tích.

Tiếp theo nêu ra qui trình thiết kế anten vi dải, xuất phát từ yêu cầu của bài toán, thiết kế sơ bộ ban đầu, tiến hành mô phỏng, điều chỉnh tham số, … cho tới khi đạt được anten thỏa mãn các yêu cầu nói trên. Cuối cùng trình bày kết quả đo đạc bằng máy network analyze, và so sánh kết quả thực nghiệm với kết quả mô phỏng.

4.1. Mô phỏng cấu trúc anten với phần mềm Ansoft HFSS 4.1.1. Phần mềm HFSS phiên bản 9.1

HFSS là viết tắt của Hight Frequency Structure Simulator. HFSS là phần mềm mô phỏng trường điện từ theo phương pháp toàn sóng (full wave) để mô hình hóa bất kỳ thiết bị thụ động 3D nào. Ưu điểm nổi bật của nó là có giao diện người dùng đồ họa. Nó tích hợp mô phỏng, ảo hóa, mô hình hóa 3D và tự động hóa (tự động tìm lời giải) trong một môi trường dễ dàng để học, trong đó lời giải cho các bài toán điện từ 3D thu được một cách nhanh chóng và chính xác. Ansoft HFSS sử dụng phương pháp phần tử hữu hạn (Finite Element Method, FEM), kỹ thuật chia lưới thích nghi (adaptive meshing) và kỹ thuật đồ họa. Ansoft HFSS có thể được sử dụng để tính toán các tham số chẳng hạn như: tham số S, tần số cộng hưởng, giản đồ trường, tham số γ, ...

HFSS là một hệ thống mô phỏng tương tác, trong đó phần tử mắt lưới cơ bản là một tứ diện. Điều này cho phép bạn có thể tìm lời giải cho bất kỳ vật thể 3D nào. Đặc biệt là đối với các cấu trúc có dạng cong phức tạp. Ansoft là công ty tiên phong sử dụng phương pháp phần tử hữu hạn (FEM) để mô phỏng trường điện từ bằng các kỹ thuật như: phần tử hữu hạn, chia lưới thích nghi, …

Ansoft HFSS cung cấp một giao diện trực giác và dễ dàng sử dụng để phát triển các mô hình thiết bị RF thụ động. Chu trình thiết kế được minh họa trong hình 4.1, bao gồm các bước sau:

1. Vẽ mô hình với các tham số cho trước: vẽ mô hình thiết bị, các điều kiện biên và nguồn kích thích.

2. Thiết đặt các thông số để phân tích: thực hiện thiết đặt các thông số để tìm lời giải.

3. Chạy mô phỏng: quá trình này hoàn toàn tự động.

Khóa luận tốt nghiệp đại học Ngành: Thông tin vô tuyến

Trong quá trình thực hiện phân tích, HFSS sẽ chia toàn bộ cấu trúc thành các tứ diện nhỏ (gọi là mắt lưới). Hệ thống mắt lưới sẽ lấp kín toàn bộ cấu trúc. Tại mỗi bước thích nghi, HFSS sẽ tính giá trị của tham số S cho từng mắt lưới. Giữa 2 bước thích nghi liên tiếp, HFSS sẽ tính gia số Delta S với công thức như sau:

Delta S = Maxij[mag(SNij – S(N-1)ij] (4.1)

Trong đó i và j là chỉ số của phần tử tuơng ứng trong ma trận S và N là chỉ số của bước thích nghi. Delta S là giá trị lớn nhất của gia số của biên độ của tham số S tương ứng. HFSS sẽ so sánh giá trị Delta S này với tiêu chuẩn hội tụ do người dùng định nghĩa để kết luận sự hội tụ của lời giải.

Hình 4.1. Chu trình thực hiện mô phỏng với HFSS

Kỹ thuật mô phỏng được sử dụng trong HFSS để tính toán trường điện từ 3D bên trong một cấu trúc dựa trên phương pháp phần tử hữu hạn (Finite Element Method, FEM). Một cách tổng quát, phương pháp FEM chia toàn bộ không gian của bài toán thành hàng ngàn vùng con nhỏ hơn (gọi là phần tử mắt lưới) và biểu diễn trường trong mỗi phần tử mắt lưới theo một hàm cơ sở riêng cho phần tử đó.

Còn trong HFSS, toàn bộ cấu trúc được chia tự động thành một số lượng lớn các khối tứ diện. Tập hợp toàn bộ các khối tứ diện này gọi là hệ thống mắt lưới phần tử hữu

Khóa luận tốt nghiệp đại học Ngành: Thông tin vô tuyến

hạn. Ta phải chọn lựa giữa kích thước mắt lưới, độ chính xác mong muốn và tài nguyên (bộ nhớ) mà máy vi tính sẵn có. Bạn luôn mong muốn đạt được độ chính xác tối đa, điều đó có nghĩa là mắt lưới cực nhỏ. Nhưng rất có thể tràn bộ nhớ và vượt quá khả năng xử lí của máy vi tính.

Để tạo ra hệ thống mắt lưới tối ưu, HFSS sử dụng quy trình lặp, gọi là phân tích thích nghi (adaptive analysis), trong đó mắt lưới được tự động “cải tiến” trong các vùng con quan trọng. Trước tiên, nó đưa ra một lời giải dựa trên một hệ thống mắt lưới được khởi tạo “thô”. Sau đó, nó “cải tiến” mắt lưới trong các vùng có tỷ trọng lỗi cao và tạo ra lời giải mới. Khi các tham số đã chọn hội tụ trong một giới hạn mong muốn, HFSS sẽ thoát khỏi quy trình lặp.

4.1.2. Kết quả mô phỏng với HFSS 9.1

Với tiêu chuẩn hội tụ được thiết đặt ở trên là: sự thay đổi cực đại của biên độ của tham số S phải nhỏ hơn 0.02 (giá trị mặc định), HFSS cần 6 bước thích nghi để thỏa mãn tiêu chuẩn hội tụ này. Hình 4.2 thể hiện quá trình hội tụ của lời giải.

Hình 4.2. Sự hội tụ của lời giải trong HFSS

Trong HFSS, ta thu được bảng này bằng cách click phải vào Resuls, sau đó chọn Solution Data. Số lượng bước thích nghi (Number of Passes) cực đại ta thiết lập ban đầu là 12, trong khi lời giải hội tụ chỉ sau 6 bước thích nghi. Biên độ cực đại của Delta S (Max Mag. Delta S) ta thiết lập ban đầu là 0.02, và khi lời giải hội tụ giá trị này chỉ là 0.0099079. Số lượng mắt lưới (khối tứ diện) tăng lên sau từng bước thích nghi. Khi lời giải hội tụ tại bước thích nghi thứ 6, hệ thống mắt lưới có 15791 khối tứ diện, hệ thống này sẽ lấp đầy toàn bộ không gian giới hạn bởi biên bức xạ như hình 4.3 dưới đây.

Khóa luận tốt nghiệp đại học Ngành: Thông tin vô tuyến

Nếu muốn đạt được kết quả chính xác hơn nữa, ta có thể thay đổi tham số “Minimum Number of Passes” tới giá trị lớn hơn 6. Và tiến hành phân tích lại.

Hình 4.3. Hệ thống mắt lưới khi lời giải hội tụ

Đồ thị hệ số phản xạ S11 (Return Loss) theo tần số cho anten được mô phỏng thể hiện trong hình 4.4a và 4.4b. Trong hình này thể hiện kết quả mô phỏng cho cả anten có nhánh điều chỉnh (nhánh thứ 3) và không có nhánh điều chỉnh.

Khóa luận tốt nghiệp đại học Ngành: Thông tin vô tuyến

Hình 4.4b. Đồ thị S11 cho anten không có nhánh điều chỉnh (nhánh thứ 3)

Hình 4.5. Đồ thị VSWR cho anten có nhánh điều chỉnh (nhánh thứ 3)

Với mất mát do phản xạ (Return Loss) S11 = -8 dB (tương ứng với hệ số sóng đứng VSWR = 2.5), ta thấy anten không có nhánh thứ 3 cộng hưởng gần các tần số 900 MHz và 2200 MHz, tuy nhiên băng thông chưa đủ để bao phủ tất cả 5 dải tần yêu cầu, đặc biệt là dải của WLAN và GSM. Còn anten có nhánh thứ 3 cộng hưởng gần các tần số 870 MHz, 2160 MHz. và 2380 MHz. Khi có nhánh thứ 3, tần số cộng hưởng của

Khóa luận tốt nghiệp đại học Ngành: Thông tin vô tuyến

anten được điều chỉnh tới xung quanh 5 dải tần ta mong muốn, đồng thời băng thông cũng gần đủ để bao phủ tất cả 5 dải yêu cầu. Tuy nhiên tần số cộng hưởng tại dải GSM không được sâu, và băng thông vẫn chưa đủ để bao phủ dải này. Ta cũng thấy rằng đỉnh cộng hưởng ở anten có nhánh thứ 3 sâu hơn.

Bảng 4.1. Tần số cộng hưởng và băng thông tương ứng của anten có nhánh thứ 3

Dải tần Tần số cộng hưởng Băng thông VSWR = 2.5

GSM (890 MHz – 960 MHz) 870 MHz 860 MHz – 880 MHz DCS (1710 – 1880 MHz) PCS (1850 – 1990 MHz) UMTS (1920 – 2170 MHz) WLAN (2400 – 2484 MHz) 2160 MHz 2380 MHz 1530 MHz – 2530 MHz Tiếp theo ta xem xét các giản đồ trường bức xạ được đưa ra bởi HFSS. Ở đây, ta chỉ quan tâm tới giản đồ bức xạ trường xa trong các mặt phẳng tọa độ XOY, XOZ và YOZ.

Hình 4.6. Giản đồ bức xạ trường xa trong mặt phẳng XOY

Từ các hình 4.6, 4.7 và 4.8 ta thấy, tại tần số 870 MHz, anten bức xạ có hướng trong mặt phẳng XOY và XOZ, bức xạ vô hướng trong mặt phẳng YOZ. Tuy nhiên, tại các tần số cộng hưởng cao hơn thì giản đồ bức xạ trong cả ba mặt phẳng bị méo dần so với tại tần số cộng hưởng 870 MHz.

Khóa luận tốt nghiệp đại học Ngành: Thông tin vô tuyến

Hình 4.7. Giản đồ bức xạ trường xa trong mặt phẳng XOZ

Khóa luận tốt nghiệp đại học Ngành: Thông tin vô tuyến

Hình 4.9. Giản đồ bức xạ 3D trường xa trong hệ tọa độ cực tại tần số 870 MHz

Hình 4.10. Giản đồ bức xạ 3D trường xa trong hệ tọa độ cực tại tần số 2160 MHz

Khóa luận tốt nghiệp đại học Ngành: Thông tin vô tuyến

Từ các giản đồ bức xạ trên ta thấy, khi tần số tăng lên thì giản đồ bức xạ của anten bị bóp méo dần, do ảnh hưởng của bức xạ của mặt phẳng đất, cũng như bức xạ do đường tiếp điện vi dải, cũng như sự lệch phối hợp trở kháng tăng lên.

4.2. Chế tạo anten

Sơ đồ khối trong hình 4.12 thể hiện phương pháp thiết kế và chế tạo anten vi dải thỏa mãn các yêu cầu của bài toán.

Thiết kế sơ b anten (trước khi mô phng)

Công việc này được thực hiện trước khi thực hiện quá trình mô phỏng. Ở bước này, ta phải xác định các tham số của anten dựa trên các yêu cầu của bài toán:

¾ Các tham số cơ bản của anten.

¾ Các tham số của anten vi dải: hằng số điện môi chất nền, mất mát bề mặt, hình dạng và kích thước thành phần bức xạ, chiều cao chất nền, điện dẫn suất của dải dẫn điện, vị trí tiếp điện, VSWR đầu vào có thể chấp nhận được để tính toán băng thông.

Thiết kế anten (giai đon mô phng)

Tính toán chi tiết các tham số của anten sử dụng các phương trình toán học: ¾ Liệt kê các phương trình tính toán các tham số của anten vi dải.

¾ Thực hiện mô phỏng anten với các tham số đã được tính sơ bộ ở trên và biểu diễn kết quả thu được.

¾ So sánh kết quả mô phỏng với yêu cầu mong muốn xem đã phù hợp chưa? ¾ Chuẩn bị chế tạo anten: vẽ lại kết cấu anten trên Protel hoặc AutoCAD.

Chế to anten

Từ file Protel hoặc AutoCAD, ta có thể đi đặt mạch in hoặc thực hiện làm thủ công.

Thiết kế Kết quả phân tích Chế tạo Đo đạc Thiết kế cuối cùng Con người Các ý tưởng Các kỹ thuật thiết kế anten Thiết kế sơ bộ Phần mềm mô phỏng

Khóa luận tốt nghiệp đại học Ngành: Thông tin vô tuyến

(a). Mặt trước

(b). Mặt sau

(c). So sánh với kích thước của đồng xu Hình 4.13. Anten được thiết kế trong khóa luận

Khóa luận tốt nghiệp đại học Ngành: Thông tin vô tuyến

Đo đạc các tham s ca anten

¾ Sử dụng máy Network Analyze để đo các tham số: hệ số phản xạ (return loss, hay S11), hệ số sóng đứng, trở kháng vào, …

¾ Lập hệ đo trường bức xạ của anten. ¾ Lưu lại tất cả dữ liệu và đồ thị.

¾ So sánh kết quả đo đạc với kết quả mô phỏng.

Thiết kế hoàn thin

¾ Thực hiện mô phỏng lại để tối thiểu hóa các lỗi. ¾ Chế tạo lại anten.

Tiếp tục đo đạc anten mới cho tới khi kết quả có thể chấp nhận được.

Hình 4.13 thể hiện hình ảnh thực tế của anten được thiết kế trong khóa luận, sử dụng chất nền FR4 có hằng số điện môi εr = 4.4, độ dày chất nền 0.8 mm.

4.3. Đo đạc các tham số của anten

Bằng máy Network Analyse ta có thể đo được các tham số của anten như: suy hao do phản xạ (S11), hệ số sóng đứng trên đường truyền vi dải (VSWR), trở kháng vào tại điểm đặt đầu đo (R + jX), … Sau đó thực hiện lập hệ đo trường bức xạ của anten. Từ hình 4.14 và 4.15, ta thấy dạng của đường cong hệ số phản xạ S11 và hệ số sóng đứng VSWR tương đổi khớp với mô phỏng trên HFSS.

Với giá trị hệ số phản xạ (Return Loss, hay S11) được chọn là: S11 = -8 dB, tương ứng với hệ số phản xạ VSWR = 2.5.

S11 (dB) = -20log10(VSWR) (4.2) Băng thông đo được trên máy Network Analyse tương ứng cho từng dải như sau:

Bảng 4.2. Băng thông thu được trên thực nghiệm

Băng tần Tần số Băng thông

GSM 856 MHz – 891 MHz 35 MHz UMTS WLAN 1941 MHz – 2235 MHz 2337 MHz – 2556 MHz 294 MHz 219 MHz

Bảng 4.3. Băng thông chuẩn cho các dải tần mong muốn

Băng tần Tần số Băng thông

GSM 890 MHz – 960 MHz 70 MHz DCS 1710 MHz – 1880 MHz 170 MHz PCS 1850 MHz – 1990 MHz 140 MHz UMTS 1920 MHz – 2170 MHz 250 MHz WLAN 2400 MHz – 2484 MHz 84 MHz

Băng thông chưa đủ để bao phủ tất cả 5 dải tần mong muốn như liệt kê trong bảng 4.3. Trong đó đặc biệt là các dải GSM, DCS, PCS. Anten được chế tạo mới chỉ bao phủ được 3 là GSM, UMTS và WLAN.

Khóa luận tốt nghiệp đại học Ngành: Thông tin vô tuyến

Hình 4.14. Tham số S11

Khóa luận tốt nghiệp đại học Ngành: Thông tin vô tuyến

Đồ thị so sánh kết quả mô phỏng và kết quả đo đạc thực nghiệm trên hình 4.16:

Hình 4.16. So sánh kết quả thực nghiệm và mô phỏng

Kết quả thực nghiệm hơi lệch so với kết quả mô phỏng có thể do một số nguyên nhân sau:

¾ Việc chế tạo anten được thực hiện theo phương pháp thủ công, do đó thành phần phối hợp trở kháng dải rộng có kích thước không chính xác như thiết kế. Điều này làm tăng hiện tượng sóng đứng trên đường truyền vi dải, do đó công suất truyền ra thành phần bức xạ giảm đi. Đồng thời làm giảm độ sâu cộng hưởng.

¾ Vật liệu chất nền (tấm điện môi mạch in) tại phòng thí nghiệm không phải là vật liệu tốt, vì vậy hằng số điện môi của chất nền εr không chính xác bằng 4.4, chiều cao chất nền h và độ dày dải dẫn điện t không hoàn toàn khớp với thiết đặt trên Ansoft HFSS và Ansoft Designer, các tham số mất mát do vật liệu điện môi cao hơn.

Một phần của tài liệu Đồ án tốt nghiệp thiết kế anten dẹt cấu trúc xoắn, tiếp điện dùng đường truyền vi dải (Trang 62 - 84)

Tải bản đầy đủ (PDF)

(84 trang)