We discuss two famous theorems concerning congruences with prime modulus. We consider first a system of congruences
(3.6.1) ๐๐(๐ฅ1, ๐ฅ2, . . . , ๐ฅ๐ก) โก 0 (mod ๐) , ๐ = 1, 2, . . . , ๐ where๐is a prime,๐ โฅ 1, and
๐๐(๐ฅ1, ๐ฅ2, . . . , ๐ฅ๐ก), ๐ = 1, 2, . . . , ๐
are polynomials in๐กvariables with integer coefficients and constant terms0, i.e.
(3.6.2) ๐๐(0, 0, . . . , 0) = 0, ๐ = 1, 2, . . . , ๐.
(3.6.2) implies that๐ฅ1โก ๐ฅ2 โก โฏ โก ๐ฅ๐กโก0(mod ๐)satisfies (3.6.1). We call this a trivial solution.
Chevalleyโs Theorem asserts that with suitable requirements for the degrees of๐๐, (3.6.1) has a non-trivial solution, too. (The degree of a term๐ฅ๐11. . . ๐ฅ๐๐ก๐กis๐1+ โฏ + ๐๐ก and the degree of a polynomial is the maximal degree among its terms having non-zero coefficient.)
Theorem 3.6.1(Chevalleyโs Theorem). If the polynomials๐๐ in(3.6.1)satisfy(3.6.2) and the sum of their degrees is less than the number of variables, i.e.
(3.6.3)
๐
โ
๐=1
deg ๐๐< ๐ก,
then(3.6.1)has a non-trivial solution. โฃ
Examples. The system of congruences
๐ฅ1+ 2๐ฅ2+ 3๐ฅ3+ 4๐ฅ4+ 5๐ฅ5โก 0 (mod 23) ๐ฅ31+ 2๐ฅ1๐ฅ2+ 3๐ฅ2๐ฅ3+ 4๐ฅ3๐ฅ24+ 5๐ฅ52โก 0 (mod 23)
has a non-trivial solution with not all๐ฅ๐ multiples of23. (Here๐ = 2and5 = ๐ก >
1 + 3 = deg ๐1+ deg ๐2.)
We can apply Theorem 3.6.1 also for๐ = 1, just one polynomial. For example, the divisibility
๐ โฃ ๐ฅ13+ 3๐ฅ32+ 5๐ฅ33+ 7๐ฅ34+ 9๐ฅ1๐ฅ2+ 11๐ฅ3๐ฅ4
can be satisfied for any prime๐so that not all๐ฅ๐ are divisible by๐. (Now๐ก = 4and deg ๐ = 3.)
Proof. Assuming that there is only a trivial solution, we shall force a contradiction.
We define two new polynomials in๐กvariables:
๐น(๐ฅ1, ๐ฅ2, . . . , ๐ฅ๐ก) =
๐
โ
๐=1
(1 โ ๐๐๐โ1(๐ฅ1, ๐ฅ2, . . . , ๐ฅ๐ก)) and
๐บ(๐ฅ1, ๐ฅ2, . . . , ๐ฅ๐ก) =
๐ก
โ
๐=1
(1 โ ๐ฅ๐๐โ1).
By Fermatโs Little Theorem,
๐๐โข 0 (mod ๐) โน ๐๐๐โ1โก 1 (mod ๐) .
This implies that substituting arbitrary integers๐1, . . . ,๐๐กinto๐บ, we get (3.6.4) ๐บ(๐1, ๐2, . . . , ๐๐ก) โก {1 (mod ๐) , if๐1โก โฏ โก ๐๐ก โก 0 (mod ๐)
0 (mod ๐) , otherwise.
We show that the same holds also for๐น, i.e.
(3.6.5) ๐น(๐1, ๐2, . . . , ๐๐ก) โก {1 (mod ๐) , if๐1โก โฏ โก ๐๐กโก 0 (mod ๐) 0 (mod ๐) , otherwise.
We consider first
๐1โก โฏ โก ๐๐กโก 0 (mod ๐) . By (3.6.2),
๐(๐1, . . . , ๐๐ก) โก 0 (mod ๐)
for every๐, so every factor of๐น(๐1, . . . , ๐๐ก)and so๐น(๐1, . . . , ๐๐ก)itself is congruent to1 modulo๐.
Now, we turn to the other case when at least one of the integers๐1, . . . ,๐๐กis not a multiple of๐. We assumed that (3.6.1) has only a trivial solution, hence๐1, . . . ,๐๐กis not a solution, so
๐๐(๐1, . . . , ๐๐ก) โข 0 (mod ๐)
for at least one๐. Applying Fermatโs Little Theorem again, this implies ๐๐๐โ1(๐1, ๐2, . . . , ๐๐ก) โก 1 (mod ๐) .
This means that a factor of๐น(๐1, . . . , ๐๐ก)and so๐น(๐1, . . . , ๐๐ก)itself is divisible by๐. Here- with we have proven (3.6.5).
By (3.6.4) and (3.6.5),
(3.6.6) ๐น(๐1, . . . , ๐๐ก) โก ๐บ(๐1, . . . , ๐๐ก) (mod ๐) for arbitrary integers๐1, . . . ,๐๐ก.
3.6. Chevalleyโs Theorem, KลnigโRados Theorem 93
From now on, we shall consider all polynomials as polynomials in๐กvariables over the modulo๐field.
In this interpretation, (3.6.6) tells us that๐นand๐บassume the same values for every substitution (the same polynomialfunctionsbelong to๐นand๐บ; however, this does not imply in general the equality of the polynomials themselves, that is, the equality of the coefficients in the case of a finite field).
Let๐ปโbe the reduced form of the polynomial๐ปobtained by replacing every๐ฅ๐๐ in๐ป with๐ฅ๐ as long as possible. The exponents of๐ฅ๐ in the terms of๐ปโare at most ๐ โ 1, and๐ป and๐ปโassume the same values everywhere. It can be easily proven by induction on the number of variables that if the polynomials๐ปand๐พassume the same values everywhere, then the (formal) polynomials๐ปโand๐พโare equal (so they have the same coefficients).
We saw that๐นand๐บassume the same values everywhere, therefore the polyno- mials๐นโand๐บโare equal. Hence,deg ๐บโ= deg ๐นโ. However, by๐บ = ๐บโand (3.6.3), this leads to a contradiction:
deg ๐บโ= deg ๐บ = (๐ โ 1)๐ก > (๐ โ 1) (
๐
โ
๐=1
deg ๐๐) = deg ๐น โฅ deg ๐นโ. โก
In the second half of this section, we express the number of solutions of a con- gruence๐(๐ฅ) โก 0 (mod ๐)in an exact formula with the help of the coefficients. This theorem by Kลnig and Rados is rather only of theoretical significance; it can be hardly applied for computing the number of solutions in practice.
Theorem 3.6.2(KลnigโRados Theorem). Let๐be a prime and๐ = ๐0+ ๐1๐ฅ + โฏ + ๐๐โ2๐ฅ๐โ2 be a polynomial with integer coefficients having๐0 โข 0 (mod ๐). Then the number of solutions of the congruence๐(๐ฅ) โก 0 (mod ๐)is๐ โ 1 โ ๐where๐ = ๐(๐ด)is the rank of the cyclic(๐ โ 1) ร (๐ โ 1)matrix๐ดover the modulo๐field,
๐ด =
โ
โ
โ
โ
๐0 ๐1 . . . ๐๐โ2
๐๐โ2 ๐0 . . . ๐๐โ3
โฎ โฎ โฑ โฎ
๐1 ๐2 . . . ๐0
โ
โ
โ
โ
. โฃ
Remarks: (1) The theorem immediately implies that๐(๐ฅ) โก 0 (mod ๐)is solvable if and only if the rank of๐ดis less than๐ โ 1, i.e.det ๐ด โก 0 (mod ๐).
(2) The requirements imposed on๐are not serious restrictions; we can obtain the number of solutions for an arbitrary polynomial๐by a simple reduction to the KลnigโRados Theorem, see Exercise 3.6.11.
Proof. We shall need the following elementary results from linear algebra. They all refer to๐ ร ๐matrices over a field๐นwhere๐(๐ต)denotes the rank of matrix๐ต; in our case,๐ = ๐ โ 1and๐นis the modulo๐field.
(i) Let๐ก1,๐ก2, . . . ,๐ก๐be distinct elements in๐น. Then the Vandermonde matrix
๐ = ๐(๐ก1, ๐ก2, . . . , ๐ก๐) =
โ
โ
โ
โ
โ
โ
1 1 1 . . . 1
๐ก1 ๐ก2 ๐ก3 . . . ๐ก๐ ๐ก12 ๐ก22 ๐ก23 . . . ๐ก๐2
โฎ โฎ โฎ โฑ โฎ
๐ก๐โ11 ๐ก2๐โ1 ๐ก3๐โ1 . . . ๐ก๐๐โ1
โ
โ
โ
โ
โ
โ has rank๐(๐) = ๐.
(ii) If๐(๐ต) = ๐, so๐ตhas an inverse, then๐(๐ถ๐ต) = ๐(๐ถ)for an arbitrary๐ถ.
Assertion (ii) follows from the inequality
๐(๐๐) โค min(๐(๐), ๐(๐))
valid for arbitrary matrices๐and๐. On the one hand,๐(๐ถ๐ต) โค ๐(๐ถ), and on the other hand,๐(๐ถ) = ๐((๐ถ๐ต)๐ตโ1) โค ๐(๐ถ๐ต).
Turning to the proof of Theorem 3.6.2, let๐ denote the number of solutions of the congruence๐(๐ฅ) โก 0 (mod ๐). Consider the matrix๐ท = ๐ด๐where๐=๐(1, 2, . . . , ๐โ1).
By (i) and (ii),
(3.6.7) ๐(๐ท) = ๐(๐ด) = ๐.
Performing the multiplication๐ด๐, the๐th element of the first row in๐ทis ๐1๐= ๐0+ ๐1๐ + ๐2๐2+ โฏ + ๐๐โ2๐๐โ2= ๐(๐).
For a simple form of the๐th element in the second row, we use also๐๐โ1โก 1 (mod ๐):
๐2๐ = ๐๐โ2+ ๐0๐ + ๐1๐2+ โฏ + ๐๐โ3๐๐โ2 โก
โก ๐๐โ2๐๐โ1+ ๐0๐ + ๐1๐2+ โฏ + ๐๐โ3๐๐โ2= ๐๐(๐) (mod ๐) . Similarly, for the๐th element in the๐th row, we obtain
๐๐๐โก ๐๐โ1๐(๐) (mod ๐) .
This means that (working with equality in the modulo๐field instead of congruences)
๐ท = ๐ด๐ =
โ
โ
โ
โ
โ
โ
๐(1) ๐(2) ๐(3) . . . ๐(๐ โ 1)
๐(1) 2๐(2) 3๐(3) . . . (๐ โ 1)๐(๐ โ 1) ๐(1) 22๐(2) 32๐(3) . . . (๐ โ 1)2๐(๐ โ 1)
โฎ โฎ โฎ โฎ
๐(1) 2๐โ2๐(2) 3๐โ2๐(3) . . . (๐ โ 1)๐โ2๐(๐ โ 1)
โ
โ
โ
โ
โ
โ
In column๐of๐ทevery element is0if and only if๐(๐) โก 0 (mod ๐). Thus,๐ทhas exactly ๐ columns with all 0s. The other columns are distinct columns of๐multiplied by a non- zero scalar, so they are linearly independent according to (i). Hence,๐(๐ท) = ๐ โ 1 โ ๐ .
Combined with (3.6.7), this proves the theorem. โก
Exercises 3.6 95
Exercises 3.6
1. Which well-known theorem is obtained as a special case of Chevalleyโs Theorem when each polynomial๐๐has degree one?
2. Verify that the congruence๐๐ฅ2+ ๐๐ฆ2+ ๐๐ง2โก 0 (mod ๐)has a non-trivial solution for every prime๐and any integers๐,๐, and๐.
3. Prove.
(a) For any๐ > 1, there exist three integers such that taking the sum๐ of their squares,๐ โฃ ๐ but๐2 โค ๐ .
(b) Moreover, even(๐, ๐ /๐) = 1can be attained.
4. Show that every prime๐has a positive multiple less than๐4/4that can be written as the sum of at most five fourth powers.
* 5. (a) Let๐1, . . . ,๐๐ be distinct primes and๐1, . . . , ๐๐ก distinct positive integers not divisible by any other primes than the๐๐. Prove that if๐ก โฅ 2๐ + 1, then we can select some distinct numbers from the๐๐(maybe just one, maybe all of them) so that their product is a cube.
(b) Generalize (a) for๐th powers where๐is an arbitrary prime.
Remark: The analogous result can be proven (using different methods) for ๐th powers where๐is a prime power, but it is not proved for any other values of๐.
* 6. Show that from any2๐ โ 1integers, we can select๐whose sum is divisible by๐.
7. Prove the following generalization of Chevalleyโs Theorem. We omit the assump- tion that the constant terms of the polynomials are0and leave the other conditions unchanged. Then the following hold for the system of congruences in question:
(a) If it is solvable, then there are at least two solutions.
* (b) The number of solutions is divisible by๐.
8. Let ๐ > 2be a prime and(๐๐, ๐) = 1. As an illustration of the KลnigโRados Theorem, determine the number of solutions of the congruence๐(๐ฅ) โก 0 (mod ๐) for the following polynomials๐:
(a) ๐๐ฅ โ ๐
(b) 1 + ๐ฅ + โฏ + ๐ฅ๐โ2 (c) ๐ฅ๐โ2โ ๐.
9. Deduce the solvability of the following congruences from the KลnigโRados Theo- rem:
(a) ๐ฅ๐โก 1 (mod ๐)where๐is an odd prime and1 โค ๐ โค ๐ โ 2 (b) ๐ฅ2โก โ1 (mod ๐), where๐is a prime of the form4๐ + 1.
10. Let๐ > 3be a prime,(๐0, ๐) = (๐1, ๐) = (๐๐โ2, ๐) = 1and ๐ = ๐0 + ๐1๐ฅ + โฏ + ๐๐โ3๐ฅ๐โ3+ ๐๐โ2๐ฅ๐โ2
๐ = ๐1 + ๐2๐ฅ + โฏ + ๐๐โ2๐ฅ๐โ3+ ๐0๐ฅ๐โ2 โ = ๐๐โ2 + ๐๐โ3๐ฅ + โฏ + ๐1๐ฅ๐โ3+ ๐0๐ฅ๐โ2. Prove that the congruences
๐(๐ฅ) โก 0 (mod ๐) , ๐(๐ฅ) โก 0 (mod ๐) , and โ(๐ฅ) โก 0 (mod ๐) have the same number of solutions.
11. Let๐ = ๐0+๐1๐ฅ+โฏ+๐๐๐ฅ๐be an arbitrary polynomial with integer coefficients. To determine the number of solutions of๐(๐ฅ) โก 0 (mod ๐)in the case๐ > ๐โ2and/or ๐0โก 0 (mod ๐), how can we reduce the problem to the KลnigโRados Theorem?