Chevalleyโ€™s Theorem, Kห onigโ€“Rados Theorem

Mแป™t phแบงn cแปงa tร i liแป‡u Number theory rรณbert freud, edit gyarmati (Trang 103 - 108)

We discuss two famous theorems concerning congruences with prime modulus. We consider first a system of congruences

(3.6.1) ๐‘“๐‘–(๐‘ฅ1, ๐‘ฅ2, . . . , ๐‘ฅ๐‘ก) โ‰ก 0 (mod ๐‘) , ๐‘– = 1, 2, . . . , ๐‘˜ where๐‘is a prime,๐‘˜ โ‰ฅ 1, and

๐‘“๐‘–(๐‘ฅ1, ๐‘ฅ2, . . . , ๐‘ฅ๐‘ก), ๐‘– = 1, 2, . . . , ๐‘˜

are polynomials in๐‘กvariables with integer coefficients and constant terms0, i.e.

(3.6.2) ๐‘“๐‘–(0, 0, . . . , 0) = 0, ๐‘– = 1, 2, . . . , ๐‘˜.

(3.6.2) implies that๐‘ฅ1โ‰ก ๐‘ฅ2 โ‰ก โ‹ฏ โ‰ก ๐‘ฅ๐‘กโ‰ก0(mod ๐‘)satisfies (3.6.1). We call this a trivial solution.

Chevalleyโ€™s Theorem asserts that with suitable requirements for the degrees of๐‘“๐‘–, (3.6.1) has a non-trivial solution, too. (The degree of a term๐‘ฅ๐‘›11. . . ๐‘ฅ๐‘›๐‘ก๐‘กis๐‘›1+ โ‹ฏ + ๐‘›๐‘ก and the degree of a polynomial is the maximal degree among its terms having non-zero coefficient.)

Theorem 3.6.1(Chevalleyโ€™s Theorem). If the polynomials๐‘“๐‘– in(3.6.1)satisfy(3.6.2) and the sum of their degrees is less than the number of variables, i.e.

(3.6.3)

๐‘˜

โˆ‘

๐‘–=1

deg ๐‘“๐‘–< ๐‘ก,

then(3.6.1)has a non-trivial solution. โ™ฃ

Examples. The system of congruences

๐‘ฅ1+ 2๐‘ฅ2+ 3๐‘ฅ3+ 4๐‘ฅ4+ 5๐‘ฅ5โ‰ก 0 (mod 23) ๐‘ฅ31+ 2๐‘ฅ1๐‘ฅ2+ 3๐‘ฅ2๐‘ฅ3+ 4๐‘ฅ3๐‘ฅ24+ 5๐‘ฅ52โ‰ก 0 (mod 23)

has a non-trivial solution with not all๐‘ฅ๐‘– multiples of23. (Here๐‘˜ = 2and5 = ๐‘ก >

1 + 3 = deg ๐‘“1+ deg ๐‘“2.)

We can apply Theorem 3.6.1 also for๐‘˜ = 1, just one polynomial. For example, the divisibility

๐‘ โˆฃ ๐‘ฅ13+ 3๐‘ฅ32+ 5๐‘ฅ33+ 7๐‘ฅ34+ 9๐‘ฅ1๐‘ฅ2+ 11๐‘ฅ3๐‘ฅ4

can be satisfied for any prime๐‘so that not all๐‘ฅ๐‘– are divisible by๐‘. (Now๐‘ก = 4and deg ๐‘“ = 3.)

Proof. Assuming that there is only a trivial solution, we shall force a contradiction.

We define two new polynomials in๐‘กvariables:

๐น(๐‘ฅ1, ๐‘ฅ2, . . . , ๐‘ฅ๐‘ก) =

๐‘˜

โˆ

๐‘–=1

(1 โˆ’ ๐‘“๐‘–๐‘โˆ’1(๐‘ฅ1, ๐‘ฅ2, . . . , ๐‘ฅ๐‘ก)) and

๐บ(๐‘ฅ1, ๐‘ฅ2, . . . , ๐‘ฅ๐‘ก) =

๐‘ก

โˆ

๐‘—=1

(1 โˆ’ ๐‘ฅ๐‘—๐‘โˆ’1).

By Fermatโ€™s Little Theorem,

๐‘๐‘—โ‰ข 0 (mod ๐‘) โŸน ๐‘๐‘—๐‘โˆ’1โ‰ก 1 (mod ๐‘) .

This implies that substituting arbitrary integers๐‘1, . . . ,๐‘๐‘กinto๐บ, we get (3.6.4) ๐บ(๐‘1, ๐‘2, . . . , ๐‘๐‘ก) โ‰ก {1 (mod ๐‘) , if๐‘1โ‰ก โ‹ฏ โ‰ก ๐‘๐‘ก โ‰ก 0 (mod ๐‘)

0 (mod ๐‘) , otherwise.

We show that the same holds also for๐น, i.e.

(3.6.5) ๐น(๐‘1, ๐‘2, . . . , ๐‘๐‘ก) โ‰ก {1 (mod ๐‘) , if๐‘1โ‰ก โ‹ฏ โ‰ก ๐‘๐‘กโ‰ก 0 (mod ๐‘) 0 (mod ๐‘) , otherwise.

We consider first

๐‘1โ‰ก โ‹ฏ โ‰ก ๐‘๐‘กโ‰ก 0 (mod ๐‘) . By (3.6.2),

๐‘“(๐‘1, . . . , ๐‘๐‘ก) โ‰ก 0 (mod ๐‘)

for every๐‘–, so every factor of๐น(๐‘1, . . . , ๐‘๐‘ก)and so๐น(๐‘1, . . . , ๐‘๐‘ก)itself is congruent to1 modulo๐‘.

Now, we turn to the other case when at least one of the integers๐‘1, . . . ,๐‘๐‘กis not a multiple of๐‘. We assumed that (3.6.1) has only a trivial solution, hence๐‘1, . . . ,๐‘๐‘กis not a solution, so

๐‘“๐‘–(๐‘1, . . . , ๐‘๐‘ก) โ‰ข 0 (mod ๐‘)

for at least one๐‘–. Applying Fermatโ€™s Little Theorem again, this implies ๐‘“๐‘–๐‘โˆ’1(๐‘1, ๐‘2, . . . , ๐‘๐‘ก) โ‰ก 1 (mod ๐‘) .

This means that a factor of๐น(๐‘1, . . . , ๐‘๐‘ก)and so๐น(๐‘1, . . . , ๐‘๐‘ก)itself is divisible by๐‘. Here- with we have proven (3.6.5).

By (3.6.4) and (3.6.5),

(3.6.6) ๐น(๐‘1, . . . , ๐‘๐‘ก) โ‰ก ๐บ(๐‘1, . . . , ๐‘๐‘ก) (mod ๐‘) for arbitrary integers๐‘1, . . . ,๐‘๐‘ก.

3.6. Chevalleyโ€™s Theorem, Kล‘nigโ€“Rados Theorem 93

From now on, we shall consider all polynomials as polynomials in๐‘กvariables over the modulo๐‘field.

In this interpretation, (3.6.6) tells us that๐นand๐บassume the same values for every substitution (the same polynomialfunctionsbelong to๐นand๐บ; however, this does not imply in general the equality of the polynomials themselves, that is, the equality of the coefficients in the case of a finite field).

Let๐ปโˆ—be the reduced form of the polynomial๐ปobtained by replacing every๐‘ฅ๐‘๐‘– in๐ป with๐‘ฅ๐‘– as long as possible. The exponents of๐‘ฅ๐‘– in the terms of๐ปโˆ—are at most ๐‘ โˆ’ 1, and๐ป and๐ปโˆ—assume the same values everywhere. It can be easily proven by induction on the number of variables that if the polynomials๐ปand๐พassume the same values everywhere, then the (formal) polynomials๐ปโˆ—and๐พโˆ—are equal (so they have the same coefficients).

We saw that๐นand๐บassume the same values everywhere, therefore the polyno- mials๐นโˆ—and๐บโˆ—are equal. Hence,deg ๐บโˆ—= deg ๐นโˆ—. However, by๐บ = ๐บโˆ—and (3.6.3), this leads to a contradiction:

deg ๐บโˆ—= deg ๐บ = (๐‘ โˆ’ 1)๐‘ก > (๐‘ โˆ’ 1) (

๐‘˜

โˆ‘

๐‘–=1

deg ๐‘“๐‘–) = deg ๐น โ‰ฅ deg ๐นโˆ—. โ–ก

In the second half of this section, we express the number of solutions of a con- gruence๐‘“(๐‘ฅ) โ‰ก 0 (mod ๐‘)in an exact formula with the help of the coefficients. This theorem by Kล‘nig and Rados is rather only of theoretical significance; it can be hardly applied for computing the number of solutions in practice.

Theorem 3.6.2(Kล‘nigโ€“Rados Theorem). Let๐‘be a prime and๐‘“ = ๐‘Ž0+ ๐‘Ž1๐‘ฅ + โ‹ฏ + ๐‘Ž๐‘โˆ’2๐‘ฅ๐‘โˆ’2 be a polynomial with integer coefficients having๐‘Ž0 โ‰ข 0 (mod ๐‘). Then the number of solutions of the congruence๐‘“(๐‘ฅ) โ‰ก 0 (mod ๐‘)is๐‘ โˆ’ 1 โˆ’ ๐‘Ÿwhere๐‘Ÿ = ๐‘Ÿ(๐ด)is the rank of the cyclic(๐‘ โˆ’ 1) ร— (๐‘ โˆ’ 1)matrix๐ดover the modulo๐‘field,

๐ด =

โŽ›

โŽœ

โŽœ

โŽ

๐‘Ž0 ๐‘Ž1 . . . ๐‘Ž๐‘โˆ’2

๐‘Ž๐‘โˆ’2 ๐‘Ž0 . . . ๐‘Ž๐‘โˆ’3

โ‹ฎ โ‹ฎ โ‹ฑ โ‹ฎ

๐‘Ž1 ๐‘Ž2 . . . ๐‘Ž0

โŽž

โŽŸ

โŽŸ

โŽ 

. โ™ฃ

Remarks: (1) The theorem immediately implies that๐‘“(๐‘ฅ) โ‰ก 0 (mod ๐‘)is solvable if and only if the rank of๐ดis less than๐‘ โˆ’ 1, i.e.det ๐ด โ‰ก 0 (mod ๐‘).

(2) The requirements imposed on๐‘“are not serious restrictions; we can obtain the number of solutions for an arbitrary polynomial๐‘“by a simple reduction to the Kล‘nigโ€“Rados Theorem, see Exercise 3.6.11.

Proof. We shall need the following elementary results from linear algebra. They all refer to๐‘› ร— ๐‘›matrices over a field๐นwhere๐‘Ÿ(๐ต)denotes the rank of matrix๐ต; in our case,๐‘› = ๐‘ โˆ’ 1and๐นis the modulo๐‘field.

(i) Let๐‘ก1,๐‘ก2, . . . ,๐‘ก๐‘›be distinct elements in๐น. Then the Vandermonde matrix

๐‘‰ = ๐‘‰(๐‘ก1, ๐‘ก2, . . . , ๐‘ก๐‘›) =

โŽ›

โŽœ

โŽœ

โŽœ

โŽœ

โŽ

1 1 1 . . . 1

๐‘ก1 ๐‘ก2 ๐‘ก3 . . . ๐‘ก๐‘› ๐‘ก12 ๐‘ก22 ๐‘ก23 . . . ๐‘ก๐‘›2

โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฑ โ‹ฎ

๐‘ก๐‘›โˆ’11 ๐‘ก2๐‘›โˆ’1 ๐‘ก3๐‘›โˆ’1 . . . ๐‘ก๐‘›๐‘›โˆ’1

โŽž

โŽŸ

โŽŸ

โŽŸ

โŽŸ

โŽ  has rank๐‘Ÿ(๐‘‰) = ๐‘›.

(ii) If๐‘Ÿ(๐ต) = ๐‘›, so๐ตhas an inverse, then๐‘Ÿ(๐ถ๐ต) = ๐‘Ÿ(๐ถ)for an arbitrary๐ถ.

Assertion (ii) follows from the inequality

๐‘Ÿ(๐‘€๐‘) โ‰ค min(๐‘Ÿ(๐‘€), ๐‘Ÿ(๐‘))

valid for arbitrary matrices๐‘€and๐‘. On the one hand,๐‘Ÿ(๐ถ๐ต) โ‰ค ๐‘Ÿ(๐ถ), and on the other hand,๐‘Ÿ(๐ถ) = ๐‘Ÿ((๐ถ๐ต)๐ตโˆ’1) โ‰ค ๐‘Ÿ(๐ถ๐ต).

Turning to the proof of Theorem 3.6.2, let๐‘ denote the number of solutions of the congruence๐‘“(๐‘ฅ) โ‰ก 0 (mod ๐‘). Consider the matrix๐ท = ๐ด๐‘‰where๐‘‰=๐‘‰(1, 2, . . . , ๐‘โˆ’1).

By (i) and (ii),

(3.6.7) ๐‘Ÿ(๐ท) = ๐‘Ÿ(๐ด) = ๐‘Ÿ.

Performing the multiplication๐ด๐‘‰, the๐‘—th element of the first row in๐ทis ๐‘‘1๐‘—= ๐‘Ž0+ ๐‘Ž1๐‘— + ๐‘Ž2๐‘—2+ โ‹ฏ + ๐‘Ž๐‘โˆ’2๐‘—๐‘โˆ’2= ๐‘“(๐‘—).

For a simple form of the๐‘—th element in the second row, we use also๐‘—๐‘โˆ’1โ‰ก 1 (mod ๐‘):

๐‘‘2๐‘— = ๐‘Ž๐‘โˆ’2+ ๐‘Ž0๐‘— + ๐‘Ž1๐‘—2+ โ‹ฏ + ๐‘Ž๐‘โˆ’3๐‘—๐‘โˆ’2 โ‰ก

โ‰ก ๐‘Ž๐‘โˆ’2๐‘—๐‘โˆ’1+ ๐‘Ž0๐‘— + ๐‘Ž1๐‘—2+ โ‹ฏ + ๐‘Ž๐‘โˆ’3๐‘—๐‘โˆ’2= ๐‘—๐‘“(๐‘—) (mod ๐‘) . Similarly, for the๐‘—th element in the๐‘–th row, we obtain

๐‘‘๐‘–๐‘—โ‰ก ๐‘—๐‘–โˆ’1๐‘“(๐‘—) (mod ๐‘) .

This means that (working with equality in the modulo๐‘field instead of congruences)

๐ท = ๐ด๐‘‰ =

โŽ›

โŽœ

โŽœ

โŽœ

โŽœ

โŽ

๐‘“(1) ๐‘“(2) ๐‘“(3) . . . ๐‘“(๐‘ โˆ’ 1)

๐‘“(1) 2๐‘“(2) 3๐‘“(3) . . . (๐‘ โˆ’ 1)๐‘“(๐‘ โˆ’ 1) ๐‘“(1) 22๐‘“(2) 32๐‘“(3) . . . (๐‘ โˆ’ 1)2๐‘“(๐‘ โˆ’ 1)

โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฎ

๐‘“(1) 2๐‘โˆ’2๐‘“(2) 3๐‘โˆ’2๐‘“(3) . . . (๐‘ โˆ’ 1)๐‘โˆ’2๐‘“(๐‘ โˆ’ 1)

โŽž

โŽŸ

โŽŸ

โŽŸ

โŽŸ

โŽ 

In column๐‘—of๐ทevery element is0if and only if๐‘“(๐‘—) โ‰ก 0 (mod ๐‘). Thus,๐ทhas exactly ๐‘ columns with all 0s. The other columns are distinct columns of๐‘‰multiplied by a non- zero scalar, so they are linearly independent according to (i). Hence,๐‘Ÿ(๐ท) = ๐‘ โˆ’ 1 โˆ’ ๐‘ .

Combined with (3.6.7), this proves the theorem. โ–ก

Exercises 3.6 95

Exercises 3.6

1. Which well-known theorem is obtained as a special case of Chevalleyโ€™s Theorem when each polynomial๐‘“๐‘–has degree one?

2. Verify that the congruence๐‘Ž๐‘ฅ2+ ๐‘๐‘ฆ2+ ๐‘๐‘ง2โ‰ก 0 (mod ๐‘)has a non-trivial solution for every prime๐‘and any integers๐‘Ž,๐‘, and๐‘.

3. Prove.

(a) For any๐‘› > 1, there exist three integers such that taking the sum๐‘ of their squares,๐‘› โˆฃ ๐‘ but๐‘›2 โˆค ๐‘ .

(b) Moreover, even(๐‘›, ๐‘ /๐‘›) = 1can be attained.

4. Show that every prime๐‘has a positive multiple less than๐‘4/4that can be written as the sum of at most five fourth powers.

* 5. (a) Let๐‘ž1, . . . ,๐‘ž๐‘˜ be distinct primes and๐‘1, . . . , ๐‘๐‘ก distinct positive integers not divisible by any other primes than the๐‘ž๐‘–. Prove that if๐‘ก โ‰ฅ 2๐‘˜ + 1, then we can select some distinct numbers from the๐‘๐‘—(maybe just one, maybe all of them) so that their product is a cube.

(b) Generalize (a) for๐‘th powers where๐‘is an arbitrary prime.

Remark: The analogous result can be proven (using different methods) for ๐‘šth powers where๐‘šis a prime power, but it is not proved for any other values of๐‘š.

* 6. Show that from any2๐‘› โˆ’ 1integers, we can select๐‘›whose sum is divisible by๐‘›.

7. Prove the following generalization of Chevalleyโ€™s Theorem. We omit the assump- tion that the constant terms of the polynomials are0and leave the other conditions unchanged. Then the following hold for the system of congruences in question:

(a) If it is solvable, then there are at least two solutions.

* (b) The number of solutions is divisible by๐‘.

8. Let ๐‘ > 2be a prime and(๐‘Ž๐‘, ๐‘) = 1. As an illustration of the Kล‘nigโ€“Rados Theorem, determine the number of solutions of the congruence๐‘“(๐‘ฅ) โ‰ก 0 (mod ๐‘) for the following polynomials๐‘“:

(a) ๐‘Ž๐‘ฅ โˆ’ ๐‘

(b) 1 + ๐‘ฅ + โ‹ฏ + ๐‘ฅ๐‘โˆ’2 (c) ๐‘ฅ๐‘โˆ’2โˆ’ ๐‘Ž.

9. Deduce the solvability of the following congruences from the Kล‘nigโ€“Rados Theo- rem:

(a) ๐‘ฅ๐‘˜โ‰ก 1 (mod ๐‘)where๐‘is an odd prime and1 โ‰ค ๐‘˜ โ‰ค ๐‘ โˆ’ 2 (b) ๐‘ฅ2โ‰ก โˆ’1 (mod ๐‘), where๐‘is a prime of the form4๐‘˜ + 1.

10. Let๐‘ > 3be a prime,(๐‘Ž0, ๐‘) = (๐‘Ž1, ๐‘) = (๐‘Ž๐‘โˆ’2, ๐‘) = 1and ๐‘“ = ๐‘Ž0 + ๐‘Ž1๐‘ฅ + โ‹ฏ + ๐‘Ž๐‘โˆ’3๐‘ฅ๐‘โˆ’3+ ๐‘Ž๐‘โˆ’2๐‘ฅ๐‘โˆ’2

๐‘” = ๐‘Ž1 + ๐‘Ž2๐‘ฅ + โ‹ฏ + ๐‘Ž๐‘โˆ’2๐‘ฅ๐‘โˆ’3+ ๐‘Ž0๐‘ฅ๐‘โˆ’2 โ„Ž = ๐‘Ž๐‘โˆ’2 + ๐‘Ž๐‘โˆ’3๐‘ฅ + โ‹ฏ + ๐‘Ž1๐‘ฅ๐‘โˆ’3+ ๐‘Ž0๐‘ฅ๐‘โˆ’2. Prove that the congruences

๐‘“(๐‘ฅ) โ‰ก 0 (mod ๐‘) , ๐‘”(๐‘ฅ) โ‰ก 0 (mod ๐‘) , and โ„Ž(๐‘ฅ) โ‰ก 0 (mod ๐‘) have the same number of solutions.

11. Let๐‘” = ๐‘0+๐‘1๐‘ฅ+โ‹ฏ+๐‘๐‘›๐‘ฅ๐‘›be an arbitrary polynomial with integer coefficients. To determine the number of solutions of๐‘”(๐‘ฅ) โ‰ก 0 (mod ๐‘)in the case๐‘› > ๐‘โˆ’2and/or ๐‘0โ‰ก 0 (mod ๐‘), how can we reduce the problem to the Kล‘nigโ€“Rados Theorem?

Mแป™t phแบงn cแปงa tร i liแป‡u Number theory rรณbert freud, edit gyarmati (Trang 103 - 108)

Tแบฃi bแบฃn ฤ‘แบงy ฤ‘แปง (PDF)

(563 trang)