[1] Ngô Tuấn Anh, Nguyễn Dinh Lâm. “7iO, micro nano composites
photocatalyst carried on nano carbon material with macroscopic siucfure”. Tap
chí khoa học và công nghệ, Dai học Da Nẵng - số 3(26),2008.
[2] B. Dong, Z. Li, X. Xu, M. Song, W. Zheng, C. Wang, “Highly efficient LaCoO; Nanofibers Catalysts for Photocatalytic Degradation of Rhodamine B”’, J.
Am. Ceram. Soc., 93, 3587-3590 (2010).
[3] Do Thi Anh Thư, “Ché tao va nghiên cứu các tinh chat của cam biên nhạy hơi côn trên cơ sở vat liệu oxit perovskife ”, Luan án tiên si khoa học vật liệu, Viện Khoa học và công nghệ Việt Nam, Hà Nội, 2011.
[4] Gallagher P.K, J.B. Mac Chesney, and Buchanan. D.N.E (1966),
“Mossbauer effect in the system Sr3Fe20,’’, J. Chem. Phys., 45, pp. 2466-2471.
[5] Goodenough J. B. (1974), “In Solid State Chemistry”, Rao. C. N. R., Ed., Marcel Dekker, New York, p 215.
[6] Khattak C P., Wang F F Y. (1979), “Perovskites and Œarnefs”, In:
Handbook on the Physics and Chemistry of Rare Earths, Gschneidner, K. A., Eyring, L. R. (eds)., North Holland, Amsterdam Vol. 3, pp. 25-607.
[7] Chunqiu Zhang, H. He, N. Wang, H. Chen, D. Kong, “Visible-light sensitive lLai,BaCoOy photocatalyst for malachite green degradation”, SciVerse ScienceDirect, Ceramics International 39 (2013) 3685-3689.
[8] Tran Thao Quynh Ngân, “7: Ống hop nano BqgsSrosCogsFegzO bằng
phương pháp Sol-gel”, Luận văn thạc si Công nghệ Hóa học, Dai học Bach Khoa -
Đại học Quốc gia Tp.HCM,2013.
[9] T. Nakamura, M. Misono, Y. Yoneda, “Reduction-Oxidation and catalytic properties of Lai „SryCo@;”, Journal of Catalysis, Vol. 83 ,pp. 151-159, 1983.
[10] H. Obayashi, Y. Sakurai, T. Gejo, “Perovskite-type oxides as ethanol sensors”, J. Solid State Chem., Vol. 17, pp. 299-303, 1979.
[ll] C.N.R. Rao, M.S. Motin, C. Narayana, “Spin-State Transition in LaCoQ3 and Related Materials”’, Topeak Curr. Chem, Vol. 234, pp. 1-2, 2004.
[12] T. Ichihara, “Fuel cells and Hidrogen energy Perovskite oxide for Solid Oxide Fuel cell”, Narottam P. Bansal NASA Glenn Research Center Cleveland, 2009.
[13] Tascon J. M. D. and Tejuca L. G. (1980), “Catalytic activity of perovskite- type oxides LaMeO;”’, React. Kinet. Catal. Lett., 15, pp. 185-191.
[14] Pena M.A., Tascon J. M. D., Fierro J. L. G., Tejuca L. G. (1987), “A study of NO and CO interactions with LaMnO;”, J. Colloid Interface Sci., pp. 100-107.
[15] Petunchi J. O., Nicastro J. L., Lombardo E. A. (1980), “Ethylene hydrogenation over Lanthanum cobalt trioxide perovskite”, J. Chem. Soc., Chem.
Commun., pp. 467-468.
[16] C. Jeffrey Brinker, George W. Scherer, “So/-Gel Science The Physics and Chemistry of Sol-Gel Processing”, Academic Press, Inc, 1990.
[17] G. W. Brindley, R. Hayami, “Kinetics and mechanism of formation of forsterite (Mg ,SiO4) by solid state reaction of MgO and SiO,”, pp. 12-14, 1965.
[18] Tsai, “Synthesis of nanocrystalline forsterite fibber via a chemical route”, Materials Research Bulletin, Vol. 37, pp. 2213-2226, 2002.
[19] Trần Viết Bang, “Nghiên cứu tổng hop LSCF6428 lam cathode cho pin nhiên liệu oxide rắn hoạt động ở nhiệt độ trung bình”, Luận văn thạc sĩ Công nghệ Hóa học, Đại học Bách khoa, Đại học Quốc gia Tp HCM, 2013.
[20] Lê Văn Cát, “Hap phụ và trao đổi ion trong kỹ thuật xử lý nước và nước thai”, NXB Thông kê Hà Nội, 2002.
[21] GS. TSKH Nguyễn Bin, “Các quá trình và thiết bị trong công nghệ hóa chất và fhực phẩm ”, tập 4, NXB Khoa học và Kỹ Thuật Hà Nội, 2005.
[22] Nguyễn Đình Hué, “Héa ly Tap 2”, NXB Giáo dục, 2000.
[23] Trần Văn Nhân, Nguyễn Thạc Sửu, Nguyễn Văn Tuế, “Hoa ly Tập 2”, NXB
Giáo dục, 2006.
[24] Ferri D., and Forni L., “Methane combustion on some perovskite-like mixed oxides”, App. Catal. B: Environmental, pp. 119-126, 1998.
[25] Tran Khắc Chương, Mai Hữu Khiêm, “Hóa lý tập 2 - Động hóa học và xúc fác”, NXB Đại học Quốc Gia TP HCM, pp. 107 -184, 2013.
[26] H.H.MoEbius, “On the history of solid electrolyte fuel celis”, J Solid State Electrochem, 1997.
[27] A.J. Bard, M. V. Mirkin, “Scanning electrochemical microscopy”, Marcel Dekker, Inc. New York, 2001.
[28] Jayant Dharma, Aniruddha Pisal, “Simple method of measuring the band gap energy value of TiO, in the powder form using a UV/Vis/NIR spectrometer ”, PerkinElmer, Inc, 2009.
[29] K. Periasamy and C. Namasivayam, “Process Development for Removal and Recovery of Cadimium of from Wastewater by a Low-cost Adsorbent: Adsorption Rates and Equilibrium Studies”’, pp. 317-320, 1994.
[30] Lê Quang Huy, “Điều chế Hydroxyapatite từ vỏ sò lam vật liệu hấp phụ
trong xu lý nước thải ”, Luận văn thạc sĩ Công nghệ Hóa hoc, Truong Đại học Bach khoa TP HCM, 2013.
[31] Nguyễn Trung Hiếu, J. Park, T. Beomseok, “Synthesis and characterization
of nanofiber-structured Bag.5S’o.sCo0o.3Feo203.5 perovskite oxide used as a catot material for low-temperature solid oxide fuel cells’, Materials Science and Engineering B, Vol. 177, pp. 205-209, 2007.
[32] S. Lee, Y. Lim, E. A Lee, H. J. Hwang, J. W. Moon,
“Bao sSrosCoogsgFegaO; (BSCF) and Lag Sro.4C0o2Feo.303 catots prepared by combined citrate-EDTA method for IT-SOFCs”, Journal of Power Sources, Vol.
157, pp. 848-854, 2006.
[33] Kazuhiko Maeda. “Photocatalytic water splitting using semiconductor particles: History and recent developments”. Journal of Photochemistry and
Photobiology C: Photochemistry Reviews 12 (2011) 237-268.
[34] F. Li, K. Yu, L. Lou, Z. Su, S. Liu, “Theoretical and experimental study of La/Ni co-doped SrTiO; photocatalyst”, Materials Science and Engineering B 172 (2010) 136-141.
[35] Z. Wei, C. Xiao, W. Zeng, P. Liu, “Magnetic properties and photocatalytic activity of LaosBaosFeogoMng;O‡y¿ and LaFeooMno 03.5", Journal of Molecular Catalysis A: Chemical 370 (2013) 35-43.
[36] C. Chang, Y. Shen, “Synthesis and characterization of chromium doped SrTiO; photocatalyst’, Science Direct, Materials Letters 60 (2006) 129-132.
[37] B. Seyfi, M. Baghalha, H. Kazemian, “Modified LaCoO3 nano-perovskite catalysts for the environmental application of automotive CO oxidation”, Chemical Engineering Journal 148 (2009) 306-311.
[38] J. Xu, Y. Ao, D. Fu, C. Yuan, J. Phys. Chem. Solids. 69,pp. 1980-1984, 2008.
[39] J. Kim, D. W. Hwang, S. W. Bae, Y. G. Kim va J. S. Lee, “Effect of Precursors on the Morphology and the Photocatalytic Water-Splitting Activity of Layered Perovskite LazTiaO;”, Korean J. Chem. Eng., 18(6), 941-947 (2001).
[40] Y. Zhao, C. Li, X. Liu, F. Gu, H. Jiang, W. Shao, L. Zhang, Y. He, Synthesis and optical properties of TiO, nanoparticles”, Materials Letters, Volume 6, pp. 79-83, 2007.
[41] V. Stengl, V. Hous, S. Bakardjieva, N. Murafa, “Photocatalytic Activity of Boron-Modified Titania under UV and Visible-Light Illumination”, Institute of Inorganic Chemistry, Academy of Science of the Czech Republic, 2011.
[42] L. Gai, X. Duan, H. Jiang, Q. Mei, G. Zhou, Y. Tian and H. Liu, “One-pot synthesis of nitrogen-doped TiO, nanorods with anatase/brookite structures and enhanced photocatalytic activity”’, CrystEngComm, 2012, 14, 7662-7671.
[43] J. Yu, H. Yu, B. Cheng, X. Zhao, J. Yu and W. Ho, “The effect of Calcination Temperature on the Surface Microstructure and Photocatalytic Activity of TiO2 Thin Films Prepared by Liquid Phase Deposition”, J. Phys. Chem. B 2003,
107, 13871-13879.
[44] L. Hui-Quan, C. Yu-Min, W. Xing-Cai, H. Wen-Shan and H. Lin, “Effect of La Contents on the Structure and Photocatalytic Activity of La-SrTiO3; Catalysis”, Chinese Journal of Inorganic Chemistry, Vol. 28 No. 12, 2597-2604, 2012.
[45] U. Sulaeman, S. Yin, T. Sato, “Synthesis of La/N Co-Doped SrTiO; Using Polymerized Complex Method for Visible Light Photocatalysis”, Advances in Nanoparticles, 2013, 2, 6-10.
[46] F.Li, Y.Liu, R. Liu, Z. Sun, D. Zhao and C. Kou, “Preparation of Ca-doped LaFeO; nanopowders in a_ reverse microemulsion and their visible light photocatalytic activity”, Materials Letters 64, 223-225, 2010.
[47] 1. Tang, Z. Zou, J. Yin, J. Ye, “Photocatalytic degradation of methylene blue on Caln2O4 under visible light irradiation”, Chemical Physics Letters 382, 175-
179, 2003.
[48] L. Hou, C. Yuan, Y. Peng, “Synthesis and photocatalytic property of SnO2/TiO2 nanotubes composites’’, Journal of Hazardous Materials B139, 310-315, 2007.
PHU LUC 1. Két qua phan tich XRD
2. Két qua BET
3. Đường cong từ
Phu luc 1: Kết qua phân tích XRD của các mẫu tong hợp
Phụ lục 1.1: Kết quả phân tích XRD của mẫu LaCoO; ở nhiệt độ nung 900°C, thời
gian nung 4 gio.
Lanthanum Cobalt Oxide
131453
i=
3.82910
| d=:
d=1,20528
Phụ lục 1.2: Kết qua phõn tớch XRD cua mau Lao ứSro„CoaaFeosO; ở nhiệt độ nung 900°C, thời gian nung 4 giờ.
Lin (Gps)
„ =2.73950
2-Theta - Scale iris: LSŒ-2raw - Type: 2Th/Th locked - Start: 10.000 * - End: 79.990 * - Sap: 0.030 ° - Step time: 0,8 s - Ternp.: 25 *C(Room) - Time Started: 6 s - 2-Theta: 10.000 * - Theta: 5.000 * - Chỉ: 0,00 ° - P
Cperations : Smooth 0.150 | Smooth 0.150 | Background 1.000,1.000 | Import
Phu lục 2: Kết qua diện tích bề mặt riêng — BET:
Phụ lục 2.1: Kết quả diện tích bê mặt riêng của mau LSCF ở nhiệt độ nung 700°C
Quantachrome MovaWin - Data Acquisition and Reduction
for NOVA instruments d
©1994-2007, Quantachrome instruments uantachrome)j 108 ‘ae ave@ents
Analysis Operator-RPTC Date-2013/10/09 Operator-RPTC Date:6/4/2014 Sample ID: 04062014 Filename: D4ADATAWova2002V2Cádata\VWPhysisortAMALI 04D62014 qos Sample Desc: Dang bet Comment: BET
Sample weight 0.37569 Sample Volume: 0.1878 cc Sample Density: 2 gicc Outgas Time: 4.0 hrs OutgasTemp: 300.0 C
Analysis gas: Nitrogen Bath Ternp- 773K Press. Tolerance: 0.100/0.100 (ađs4des) Equil time: 8090 sac (ada/des) Equil timeout: 200/300 sec (œds44e+) Analysis Time: 34 5 min End of run: 2013/1009 8:24:22 instrument: Nova Station B Cell ID- 12
Muiti-Point BET Plot
Data Reduction P; = Po override: 765.00 ~wee,
Adsorbate Nitrogen Temperature 77 350.
Molec. Wit: 28.013 „ Cross Section: 16.200 ¿+ Liquid Density: 0.808 +.
Ls Cá= 1.
4 D BF
HH DO dư 7 Per Teen: quar hat cv TK === Gee St ay nh 7 thơ dụ 1 mer
! ! ! ! ! ! ! ! 1 1 1 1 1 ! ! ! ' ' ' ! ! 1 ! oan CPt eee BR oper wom LÊ we yn nt Din gegen vse. 1c... .. 2.2 Boo re ae ow gy ' nm ong be ee ! po
24.2000 1 1 1 1 H [ 7 11 ' ' ' ' J ! H
Í 1 ! ! ! ' ' 1 1 1 1 ! 1 ! !
—_—————~ fe ae oes ase oe os ole ——————~ od) ae epee a ee oe 0 ee a a Cee ene ow oo om oe ade eee os oo aes an 20.0000 1 ' ' ' ' ! ! !
= ' ' 1 i ' ' '
= ! ! ! ! ! ! ! vy ! ! ! ! ! 1 ! !
& a +----+--= a dơ==>>==s +-xÊ“—=—— t—-=——-== r—=====- ơ-—-=—=-== ơ-—
' ng fi i ' h i i i
1 ! ! ! ! t ! !
= h H H h H h ‘ H wa a se A CN. 1 eee — |2.0000 1 Ủ ! 1! ! ! !| Moc meee bess cain sche cle bao HS mÁ Cer ee a
1 ! ! ! ! ' ' ' ' ' 1 Í Ủ ' ' '
! ! ! ! ! ! ' ' 1! ! 1 ! ! ! !
acooo | ~~~ 7-7" ee tp er Tớ: | ier: i cai ty oe sll .
! ! ! ! ! ' ! ! i 1 ! Í 1 ! ! '
! ! ! ! ! ! !
—L---->Z =o 4--- =Ề..ưđ +2=~===== . re=~==== 4---=-=-- 4-- 4.0000 1 ! ! ! ! ! ! !1 1 ! Ù ' 1! ' '
! ' ' ' ' ! 1 !
o.coce } : " h : H h r 0.0000+004.000e02 8GOOe-O2 1.200e-O1 1.6000-01 2000001 2400601 2.800001 3.200001
Relative Pressure, P/Po
BET summary Slope = 63.373 intercept = 1.781e+00 Correlation coefficient, r = 0.999928
C constant= 47.558 Surface Area = 40.892 mig
- Report id:{1038448578:20140803 224658312} Page 1 of 1
Phu luc 2.2: Két qua dién tich bê mặt riêng của mau LSCF ở nhiệt độ nung 900°C
Quantachrome NovaWin - Data Acquisition and Reduction
(1094.2087, Quartachrome Inetruments Quantachromei 10.0 ¡98 ®®&UM+†MŒ1+
Analysis Report Operator-RPTC Date-2013/10/09 Operator-RPTC Date:6/9/2014 Sample ID: 10062014 Filename: D4ADATAWova2002V3CdataVWPhysisortAMALI 10082014.qps Sample Desc: Poo es Comment: BET
Sample weight 8 Sample Volume: 0.11155 œ Sample Density: 2 gœ Outgas Time: 4.0 hrs OutgasTemp: 300.0 C
Analysis gas: Nitrogen Bath Ternp- 773K Press. Tolerance: 0.100/0.100 (adeiies) Equi time: 80/90 sac (adaides) Equil timeout: 300/300 sec (adsiies) ror) ơ tong — End of run: 2013/1009 10-3151 instrument: Nova Station 8
Multi-Point BET Plot
Data Reduction P: t Po override: 765.00 „ae,
Adsorbate Nitrogen Temperature 77.350.
Molec. Wt- 28.013 ; Cross Section: 16.200 ¿+ Liquid Density: 0808 „-
œ =)bì D Đế
1 h! ! !
' ! '
i i] '1
! ! !
i i i
——Ppe ewe eee ee ape ewe ewe eed ww ewe ee ewe if ew eee ee ee tT——=——=—=—== er seca ewwece gece ewe eee deere eee ee fe =
' i
! !!
i'
Cư to Làn oxo mn tat a oaths n:2E sa Scum wad on có moval
1/[1⁄⁄0#2/I- 1) ]§ 0.0000+00 4.000e-02 &.0000-02 1.200e-01 1.200001 2.000001 2.400o.01 2.8000-01 3.2000-01Ee +-—————————~—=——~——~ +—~=—=———~—~—~“~~—~“m~—~———~ ne ee eee lu cu Sak ws ers aaa Se SRS os Sage cbrer Ôn Nhị ng cọ Ván. tis fos 3 ak hr ok oe
BET summary
Slope = 33.538 intercept = „2.009e-02 Correlation coofficient, r= 0.999498
C constant= ~1698 591 Surface Area = 103 899 mfg
~ Report id-4368181945:201 40608 231232718) Page 1 of 1
Phu luc 3: Két qua dwong cong tir:
Phu lục 3.1: Kết qua đường cong từ của mẫu LCO ở nhiệt độ nung 900°C
Hysteresis Loop
emuig Giaphong LaCoO3
1.500E-1 P HysX Al
1.200E-1
1.000E-1 ⁄“
8.000E-2 LZ 6.000E-2 LO
4.000E-2 YX
2.000E-2 0.000E+0
-2.000E-2
-4.000E-2 LZ -6.000E-2 VA -8.000E-2 LO -1.000E-1 LO -1.200E-1 an
-1.500E-1 - a
-16000 -10000 -5000 0 5000 10000 16000
Applied Field [Oe]
System ID: EV 11; SN: 20100622; Customer:Physics Institute Vietnam; first started on: Tuesday, May 25, 2010 Date and time of last calibration: Tuesday, March 29, 2011 09:18:24
Operator: HONGPHUC Sample name: Giaphong LaCoO3 test
Data filename: c:wsm-hW\System_Admin\data\GiaphongLaCoO3\GiaphongLaCoO3-Hys.YHD Start of measurement: 18:39:32, Monday, April 07, 2014
Field Angle: 0.00 [deg]
Total measurement time: 00:17:30
Parameters
Upward Part Downward part Average Parameter ‘definition’
Hysteresis Parameters Hysteresis Loop
Mr emu/g -2.024E-3 2.024E-3 2.024E-3 Remanent Magnetization: M at H=0 Ms emufg 145.372E-3 -145.370E-3 145.371E-3 Saturation Magnetization: maximum M measured
He Oe 57.08 -5B.19 56.64 Coercive Field: Field at which M//H changes sign M at H max emu¿g 145.372E-3 -145.004E-3 145.188E-3 M at the maximurn field
BHmax MGsOe 0.000E+0 0.000E+0 0.000E+0 Maximum energy loss of the hysteresis loop
về MicroSense
MicroSense EasyVSM Software Version 9.13L (September 29, 2010)
Phu luc 3.2: Kết qua đường cong từ cua mẫu LSCF ở nhiệt độ nung 900°C
Hysteresis Loop
emuig Giaphong LSC F6428
3.803.50 b2, A
2.50 LL 2.00 [ 1.50 Ỉ [ 1.00 | | osc [if 0.00 | | -0.50 | -1.00 | | -1.50 | | -2.00 i /
/
-2.50
-3.00 4 BA
-3.50 .80 —
-16000 -10000 -5000 0 5000 10000 16000
Applied Field [Oe]
System ID: EV 11; SN: 20100622; Customer:Physics Institute Vietnam; first started on: Tuesday, May 25, 2010 Date and time of last calibration: Tuesday, March 29, 2011 09:18:24
Operator: HONGPHUC Sample name: Giaphong LSC F6428 test
Data filename: c:wsm-hW\System_Admin\data\GiaphongLSCF6428\GiaphongLSCF6428-Hys. VHD Start of measurement: 18:19:17, Monday, April 07, 2014
Field Angle: 0.00 [deg]
Total measurement time: 00:17:13
Parameters
Upward Part Downward part Average Parameter ‘definition’
Hysteresis Loop Hysteresis Parameters
Mr emu/g -1.951E+0 1.955E+ 1.953E+0 Remanent Magnetization: M at H=0 Ms emufg 3.695E+0 -3.702E+0 3.699E+0 Saturation Magnetization: maximum M measured
He Oe 1516.30 -1521.88 1519.09 Coercive Field: Field at which M//H changes sign M at H max emu¿g 3.695E+0 -3.696E+0 3.696E+0 M at the maximurn field
BHmax MGsOe 27.490E+0 27.73BE+ 27 .613E+0 Maximum energy loss of the hysteresis loop
về MicroSense
MicroSense EasyVSM Software Version 9.13L (September 29, 2010)