2.3.1. Tổng quan
Mục đích của thuật toán điều khiển công suất theo bước động là để cải thiện đặc tính của hệ thống thông tin di động tổ ong UMTS/WCDMA. Phương pháp này sử dụng các lệnh điều khiển công suất động, SIR nhận (công suất nhận) và dữ liệu hỗ trợ định vị điện thoại cầm tay. Ngoài ra, sự kết hợp giữa điều khiển công suất, điều khiển cho phép và điều khiển chuyển giao nhằm mục đích cải thiện độ hội tụ của phương pháp điều khiển công suất này.
Điều khiển công suất là một cơ chế cần thiết đối với sự vận hành của hệ thống WCDMA. Điều quan trọng trong cơ chế điều khiển công suất chính là làm tối đa hóa tỉ số SIR cực tiểu của các kênh trong hệ thống WCDMA, giải quyết các yêu cầu về chất lượng dịch vụ QoS cho mỗi kênh.
Thuật toán điều khiển công suất thường chia làm hai nhóm:
• Phân tán (Distributed).
• Tập trung (Centralized).
Đối với các thuật toán điều khiển công suất tập trung, đòi hỏi bộ điều khiển trung tâm phải biết được cường độ tín hiệu của tất cả các đường truyền dẫn vô tuyến đang hoạt động. Đồng thời lờ đi việc xử lý, giải quyết những thay đổi của công suất truyền. Điều này sẽ làm tăng tính phức tạp của mạng hệ thống cũng như việc thực thi sẽ đòi hỏi độ phức tạp cao hơn. Nguyên nhân là do các thuật toán này yêu cầu thông tin chi tiết của các kênh vô tuyến một cách tập trung - điều này không được đáp ứng trong thời gian thực cũng như trong các mạng di động đa tế bào.
Các thuật toán điều khiển công suất phân tán không cần yêu cầu thông tin về các kênh vô tuyến độc lập một cách tập trung. Thay vào đó, chúng cho phép thích ứng với các mức công suất khác nhau bằng cách chỉ dùng các đại lượng đo vô tuyến cục bộ. Điều khiển công suất phân tán chú ý tới sự thay đổi của chất lượng dịch vụ - một trong những yếu tố vô cùng quan trọng của các hệ thống thông tin di động tế bào sau này. Tuy nhiên, chúng lại không quan tâm tới việc thực thi các kết nối mới thay cho các kết nối đã tồn tại trong QoS.
Các phương thức điều khiển công suất có thể được nhóm thành hai loại chính sau đây:
• Điều khiển công suất dựa trên công suất truyền.
Điều khiển công suất dựa trên SIR hay còn gọi là điều khiển công suất dựa trên chất lượng bởi SIR phản ánh xác suất bit lỗi nhận được. Đây cũng chính là tiêu chí dùng để đánh giá chất chất lượng dịch vụ QoS. Đặc biệt ở đường lên, điều khiển công suất dựa trên SIR có đáp ứng dung lượng biến thiên theo nhiễu giao thoa, có thể được nhìn thấy bởi máy cầm tay phía thu đường lên. Tuy nhiên, việc điều khiển các hồi tiếp dương và các ảnh hưởng của nó là điều rất phức tạp bởi một hệ thống thì bao gồm nhiều trạm gốc BS và nhiễu tại mỗi trạm gốc lại có độ sai lệch hoàn toàn độc lập với nhau.
Điều khiển công suất dựa trên công suất truyền lại dựa trên sự đo đạc chính xác các thông số của kênh vô tuyến. Nguyên lý cơ bản của các thuật toán loại này là công suất được điều chỉnh tùy theo độ sai lệch kênh vô tuyến đã được đo đạc.
2.3.2. Thuật toán điều khiển công suất bước động DSSPC
2.3.2.1. Khái niệm và lợi ích của độ dự trữ công suất (cửa sổ công suất)
Độ dự trữ SIR nhiều mức là sự giả thiết về biến đổi kênh ban đầu mà cần phải được xác định theo kết quả của phép đo vô tuyến thời gian thực. Những giới hạn trên và dưới của độ dự trữ công suất tuỳ thuộc vào tải/giao thoa của mạng vô tuyến trong truy cập vô tuyến hay tại mức tế bào. Bằng việc xác định độ dự trữ công suất nhằm đảm bảo các chỉ tiêu và độ ổn định của hệ thống.
Do mạng vô tuyến là môi trường động nên vùng dự trữ công suất có thể dao động lên trên hoặc xuống dưới khi mức tải và nhiễu giao thoa thay đổi. Khi kênh mang (bearer) vô tuyến được thiết lập, DSSPC sẽ điều khiển kênh mang này (có quan hệ với mức công suất phát) để tối ưu hóa mức công suất phát này nằm trong giới hạn cho phép của độ dự trữ công suất. Điều này có thể đạt được bằng cách sử dụng thông tin về QoS của kênh mạng cũng như mức nhiễu giao thoa mà nó gây ra cho mạng và dung lượng của mạng có liên quan tới nhiễu. Để cung cấp chất lượng dịch vụ tốt nhất với mức tối thiểu công suất truyền (hay SIR) thì cần phải cân bằng giữa chất lượng dịch vụ QoS, dung lượng mạng, quản lý cước kênh mang…Tuy nhiên, mức điều khiển công suất không nhất thiết phải là mức nhỏ nhất có thể nhưng lại phụ thuộc vào chiến thuật cân bằng được sử dụng. Đó là cung cấp QoS tốt nhất với công suất truyền (hoặc SIR) ở mức thấp nhất nhằm duy trì một mức tương ứng của dung lượng
Hình 2.6 Dự trữ SIR với các chất lượng dịch vụ khác nhau
Hình 2.6 đã chỉ rõ mức công suất truyền của trạm di động được điều khiển để nó hội tụ ở mức tối ưu. Thay vì giới hạn một mức cho SIR mà ở đây SIR đa mức sẽ được dùng bao gồm các giới hạn ngưỡng trên và ngưỡng dưới. Vì vậy, ứng với mỗi dịch vụ như thoại, dữ liệu hay hình ảnh sẽ có các mức công suất truyền tối ưu riêng mà công suất của UE từ ở mức trên hay mức dưới sẽ được hội tụ về đó.
2.3.2.2.Sự hoạt động của mạng 31 Sai Sai Đúng Bắt đầu
Nhận công suất ban đầu và các thông số SIR_real > SIRmax Đúng Đúng Sai Đúng SIRoptmax ≤ SIR_real SIRoptmin ≤ SIR_real SIRmin ≤ SIR_real SIR_real < SIRmin Sai
Hình 2.7 Quá trình tạo lập- quyết định TPC trong DSSPC
Hình 2.7 là giản đồ hoạt động căn bản của phương pháp DSSPC đối với điều khiển công suất đường lên. Trong điều khiển công suất đường lên, bên cạnh mạng thì điều khiển truy cập vô tuyến và trạm gốc cũng nằm trong một phần điều khiển của tiến trình điều chỉnh công suất.
Các đối tượng điều khiển cho phép và điều khiển công suất của bộ điều khiển truy nhập vô tuyến sẽ thiết lập các đích chất lượng tín hiệu, bao gồm: SIR_max, SIR_opt_max, SIR_opt_min, SIR_min. Điều này có thể dựa trên thông tin lưu lượng sẵn có trong AC(Admission Control), cường độ tín hiệu, SIR, các độ ưu tiên truy cập, thông tin hỗ trợ định vị…
Như đã chỉ ra trong hình 2.7, trạm gốc phát lệnh công suất truyền (TPC: Transmit Power Command) bằng việc so sánh SIR nhận được tương ứng công suất của kênh đường lên với các ngưỡng xác định của SIR tương ứng với độ dự trữ công suất.
2.3.2.4.Sự hoạt động của UE
Đầu tiên, UE nhận lệnh điều khiển công suất từ trạm gốc BS. Nó ghi lệnh điều khiển công suất tiếp theo vào thanh ghi bit lệnh. Việc thay đổi dữ liệu gốc được lưu trữ tại đây, bao gồm dữ liệu về những lệnh điều khiển công suất gần đây nhất, các kích thước bước, tọa độ của máy cầm tay.
UE kiểm tra giá trị lệnh điều khiển công suất, kích thước bước và thông tin hỗ trợ định vị bao gồm cả sự thay đổi của dữ liệu gốc. Nếu lệnh điều khiển công suất hoặc chuỗi kích thước bước là chẵn, nghĩa là mức công suất không hoàn toàn thay đổi nhưng được giữ ổn định và không có số lượng đáng kể cần thay đổi công suất truyền.
Nếu lệnh điều khiển công suất hoặc chuỗi kích thước bước không phải là số chẵn thì tiến trình điều khiển sẽ tiến tới bước kiểm tra lệnh, hay nói cách khác chỉ có duy nhất một tập lệnh điều khiển công suất được lặp lại thường xuyên. Trong trường hợp đó, kích thước bước lớn hơn sẽ được chú ý tới để bù vào sự thay đổi của công suất truyền.
Nếu lệnh điều khiển công suất hoặc chuỗi kích thước bước không chẵn cũng không lẻ mà được lặp lại một cách bất quy tắc thì tiến trình điều khiển sẽ tiến thẳng tới bước, nơi mà điều khiển công suất nhanh không nhiễu xảy ra. Trạm di động có khả năng định vị sẽ được dùng để dự đoán sự thay đổi đó.
Việc tính toán kích thước bước động DSS (Dynamic Step-Size) dựa trên công thức (2.11). DSS là kết quả kết hợp của hằng số và biến số trong điều khiển công suất. Do đó, UE điều chỉnh công suất truyền của nó bằng cách thêm DSS vào công suất tín hiệu ban đầu Po như sau:
Ptrx(dB) = Po(dB) + DSS (dB)
DSS(dB) = α. β. γ, với γ = 1 khi ∆SIR < 0 -1 khi ∆SIR > 0 (2.11) Trong đó:
α: Kích thước bước cố định đã được xác định trước.
β: Thành phần động của DSS, được định nghĩa dựa trên giá trị SIR thực và SIR đích tương ứng với kết nối vô tuyến. Mục đích của DSS là để bù vào sự suy giảm công suất vì kênh truyền không ổn định.
Để xác định giá trị β thì phải có thông số SIR nhận được và SIR đích. Tuy nhiên, các thông tin này chỉ có ở trạm gốc. Vì vậy, đối với việc điều chỉnh công suất truyền đường lên sẽ có hai cách để thực thi phương pháp điều khiển công suất này:
1. Thông tin liên quan đến SIR được truyền đến trạm di động bằng cách dùng tín hiệu kênh riêng hay kênh chung. Bộ phân tích dữ liệu gốc (HDAL: History Data Analyzer Logic) của trạm di động tính toán giá trị của β dựa trên bảng dò tìm (bảng 3.1).
2. Giá trị của β được tính toán tại BS bằng việc dùng tiêu chuẩn được định nghĩa trong bảng dò tìm. Do vậy, thông tin được truyền đến trạm di động là β. γ.
Trong trường hợp này UE không cần tính toán tới các tham số liên quan đến SIR nên giảm bớt được độ phức tạp cũng như sự tiêu thụ pin của nó.
2.1 Bảng tra cứu dành cho DSSPC
Trong bảng 2.1, Ki = ( 0, …, Kn+1 ) là số nguyên, có thể tối ưu dựa trên những phép đo thực tế liên quan đến mạng vô tuyến.
Do đó, nó có thể thay đổi phụ thuộc vào sự thay đổi thời gian thực trong chất lượng tín hiệu vì fading và SIR đích cho kênh mang yêu cầu ánh xạ bởi mạng. Trong ví dụ này các giá trị nhiều mức của SIR đích được định nghĩa như: SIR_max, SIRopt_ max, SIRopt_ min, SIR_min.
Hình 2.8 là mô hình chung về sơ đồ khối thực hiện phương pháp điều khiển công suất ứng dụng cho đường lên. BS nhận tín hiệu được truyền bởi UE và hướng tới để giữ cường độ tín hiệu nhận được không thay đổi bằng cách gởi lệnh điều khiển công suất đến UE.
Tiêu chuẩn so sánh SIR β γ
SIRopt_min≤ SIRreal ≤ SIR max 0 X(tùy ý) SIRopt_max≤ SIRreal≤ SIRmax K1 1 SIRreal > SIRmax K2 1 SIRmin ≤SIRreal ≤ SIRopt_min K1 -1 SIRreal < SIRmin K2 -1
Hình 2.8 Mô hình chung của DSSPC đối với điều khiển công suất đường lên BS chịu trách nhiệm để đo SIR nhận được và một phần của những phép đo đó yêu cầu thiết lập thông số dự trữ công suất và các SIR đích. Các phép đo được thực hiện sau máy thu phân tập RAKE, nơi kết nối nhiều nhánh khác nhau của tín hiệu nhận được. Tại khối trạm gốc, các giá trị đích và giá trị đo được của SIR được so sánh. Trạm gốc cũng tính toán giá trị tương ứng cho β và γ như định nghĩa trong bảng 2.1. Để xác định lệnh công suất truyền, bộ phát BS gởi các lệnh công suất phát (TPCs) đến trạm di động để tăng, giảm hay giữ công suất truyền không thay đổi.
Tại UE, các lệnh điều khiển công suất được tập hợp thành một vector mà trạm di động ghi vào bộ phân tích dữ liệu gốc (HDLA). HDLA phân tích vector bit lệnh nhận được khi đưa ra giá trị thích ứng của DSS. HDLA đưa ra đưa ra thành phần thích ứng của DSS dựa trên thông tin nhận được từ trạm gốc dưới dạng luồng bit TPC. Cuối cùng, phần tử điều khiển điều chỉnh công suất truyền của trạm di động dựa trên phương trình (2.11).
2.4. Phương pháp điều khiển công suất phân tán ( DPC - Distributed Power Control) Control)
2.4.1. Mô hình hệ thống
i J j i j M j Mj i Mi i o i b i P G P G W N R E I S γ η = + = = ∑ = ≠ 1 . . . . (2.12)
Trong đó Eb là năng lượng bit thông tin và N0 là mật độ phổ công suất tạp âm. Công suất truyền của thuê bao thứ i là Pi được giới hạn bởi mức công suất cực đại là Pi ≤ Pi_max với 1 ≤ i ≤ J (2.13)
Ri là tốc độ dữ liệu của thuê bao thứ i, GMi là độ lợi đường truyền giữa UE thứ i và BS M. Giá trị của GMi được giả thiết là hằng. Việc giả thiết này là hợp lý nếu thuật toán điều khiển công suất có thể hội tụ trong khoảng thời gian ngắn. W độ rộng băng tần trải phổ, ηMlà nhiễu nền. Do vậy, việc chính yếu của điều khiển công
suất là tìm ra vector công suất dương P = (P1, P2. . . PJ) thoả mãn:
γi ≥ γT 1 ≤i,j≤J (2.14) Trong đó γ T là mức SIR tối thiểu yêu cầu được xác định bởi mỗi dịch vụ hay
môi trường BER.
2.4.3. Thuật toán điều khiển công suất phân tán ( DPC )
Mỗi UE điều khiển công suất truyền của nó trong giới hạn cực đại dựa trên thông tin mức công suất của nó và phép đo SIR. Thuật toán DPC điều khiển mức SIR của tất cả các thuê bao để đạt được SIR yêu cầu nếu có thể.
Chúng ta đề xuất thuật toán điều khiển công suất phân tán mới sử dụng tham số thay đổi từ thuật toán truyền thống để cải thiện hiệu quả của nó. Hàm công suất mới là vấn đề chính cần thiết để đạt được mức SIR tối thiểu. Nếu SIR của UE trên mức cực tiểu trong suốt thời gian điều khiển công suất thì ít nhất một kết nối UE – BS sẽ bị cắt. Do vậy, tốc độ hội tụ liên quan đến dung lượng hệ thống.
Thuật toán có thể được mô tả như sau : Pi(0) = P0i Pi(n+1) = ek (γ T - γ i(n)) * Pi(n) hay Pi(n+1) (dBm)= ek (γ T - γ i(n)) (dBm) + Pi(n) (dBm) (2.15) Trong đó, k là tham số dương (được khảo sát kỹ trong [12]) nếu k quá lớn tốc độ hội tụ sẽ chậm, nếu k quá nhỏ SIR sẽ dao động. Chúng ta có thể đạt được tốc độ hội tụ nhanh hơn bằng cách tối ưu hoá k. P0i là công suất truyền ban đầu của thuê
bao, Pi(n+1) là công suất truyền của thuê bao thứ i trong vòng lặp thứ n, γi(n) (dB) là SIR của thuê bao thứ i tại vòng lặp thứ n.
Có các trường hợp sau :
Trường hợp 1: γi(n) < γ T Pi(n+1) < Pi(n)
(2.16)
Trường hợp 2: γ i(n) > γ T Pi(n+1) > Pi(n) (2.17)
Trường hợp 3: γ i(n) = γ T Pi(n+1) = Pi(n) (2.18)
Mục đích chính của thuật toán này là tăng hay giảm công suất truyền của UE liên quan SIRi (γ i) được nhận bởi trạm M. Bằng cách điều chỉnh thông số k trong
hàm điều khiển công suất, hệ thống sẽ thoả mãn các yêu cầu vận hành khác nhau. Như vậy, thuật toán điều khiển công suất phân tán DPC dựa trên giá trị SIR đích, các giá trị SIR đo được sẽ được hội tụ về giá trị SIR đich đó. Khi đó, công suất phát của UE sẽ không đổi theo thời gian.
2.5. Kết luận
Phương pháp điều khiển công suất theo bước động DSSPC đã tập trung vào điều khiển công suất truyền bằng cách dùng khái niệm ngưỡng nhiều mức, các lệnh điều khiển công suất TPC. Bước động bù cho sự chậm của phương pháp điều khiển công suất cố định nhưng cũng cần sự bù nhanh của công suất truyền trong cửa sổ công suất chấp nhận được, cân bằng sự ổn định của hệ thống.
Phương pháp điều khiển công suất phân tán DPC cũng dùng thông tin về tỷ số tín hiệu trên nhiễu giao thoa SIR nhưng mức ngưỡng SIRi được điều chỉnh cho phù hợp với từng đường truyền vô tuyến để đạt được chất lượng đường truyền tốt nhất. Do đó DPC có khả năng đạt được mức SIR yêu cầu và hệ thống hoạt động ổn định