Kết luận chương

Một phần của tài liệu ước lượng kênh trong ofdm của wimax (Trang 26 - 71)

Có thể nói WIMAX là chuẩn sẽ được mọi người mong đợi nhất vì tính ưu việt của nó trong thiết kế cũng như trong ứng dụng. Hệ thống của WIMAX được tích hợp rất nhiều công nghệ nhanh và hiệu quả.

WIMAX sử dụng các kĩ thuật OFDM và OFDMA nhằm tận dụng tối đa băng thông tiết kiệm được nguồn tài nguyên về tần số, đồng thời nâng cao tốc độ của đường truyền đáp ứng được các nhu cầu của các dịch vụ đòi hỏi các ứng dụng thời gian thực.

CHƯƠNG 2 : Kĩ thuật OFDM và OFDMA trong WIMAX 2.1 Giới thiệu chương

WIMAX sử dụng kĩ thuật điều chế OFDM và OFDMA, ứng dụng triển khai thương mại, công nghệ anten thông minh, quản lý tài nguyên vô tuyến và chuyển vùng (handoff).

Có nhiều công nghệ và thuật toán cải tiến sẵn có nhằm đáp ứng các thách thức cung cấp các dịch vụ băng rộng di động và đảm bảo mô hình kinh doanh hấp dẫn đối với nhà cung cấp dịch vụ.

Từ những giới thiệu ở trên, chúng ta có thể thấy rằng OFDM có tầm quan trọng nhất định trong hệ thống WIMAX. Để tìm hiểu điều này, ta sẽ tìm hiểu cấu trúc của một hệ thống OFDM cơ bản, phương thức điều chế thu-phát tín hiệu và các ứng dụng thực tế của nó trong hệ thống WIMAX (hệ thống OFDMA).

2.2 Công nghệ điều chế OFDM: 2.2.1 Cơ sở của OFDM:

Cơ sở ghép kênh phân chia theo tần số trực giao (OFDM-Orthogonal Frequency Division Multiplex) nó chia nhỏ băng thông thành các tần số ong mang con. Trong một hệ thống OFDM, luồng dữ liệu đầu vào được chia thành các luồng song song với tốc độ giảm (và như vậy tăng khoảng thời gian của kí hiệu –sysbol) và mỗi luồng con được điều chế và truyền trên một ong mang con (sub-carrier) trực giao tách biệt. Khoảng thời gian cho mỗi biểu trưng tăng sẽ cải thiện khả năng chống lại trễ lan truyền của OFDM.

2.2.1.1 Cơ sở trực giao:

Sự trực giao chỉ ra rằng có mối quan hệ toán học chính xác giữa các tần số của các ong mang trong hệ thống OFDM. Trong hệ thống FDM thông thường, nhiều ong mang cách nhau một khoảng phù hợp để tín hiệu có thể nhận lại bằng cách sử dụng các bộ lọc và các bộ giải điều chế thông thường.

Trong các máy như vậy, các khoảng bảo vệ cần được dự liệu trước giữa các ong mang khác nhau và việc đưa vào các khoảng bảo vệ này làm giảm hiệu quả sử dụng phổ.

Tuy nhiên có sự sắp xếp giữa các ong mang trong OFDM sao cho các dải biên của chúng che phủ lên nhau mà các tín hiệu vẫn có thể thu được chính xác mà không có sự can nhiễu giữa các ong mang.

Muốn như vậy các ong mang phải trực giao về mặt toán học. Máy thu hoạt động như các bộ gồm các bộ giải điều chế, dịch tần mỗi ong mang xuống mức DC, tín hiệu nhận được lấy tích phân trên một chu kỳ của sysbol để phục hồi dữ liệu gốc.

Nếu tất cả các ong mang khác đều được dịch xuống tần số tích phân của ong mang này (trong một chu kỳ sysbol  ), thì kết quả tích phân cho các ong mang khác sẽ bằng 0.

Do đó các ong mang độc lập tuyến tính với nhau (trực giao) nếu khoảng cách giữa các ong là bội số của 1/ . Bất kỳ sự phi tuyến nào gây ra bởi can nhiễu bởi các sóng mang ICI (Inter-Carrier-Interference) cũng làm mất đi tính trực giao.

1 i k k i 0 ) ( ) ( 2 1        t ik T T i tt dt   (2.1)

Như vậy {i(t)}{sin(n2t/T),cos(m2t/T)} với TuTlTl1. Ngoài ra có thể biểu diễn sự trực giao theo hàm phức:

1 i k k i 0 * ) ( ) (    i tk t dtik (2.2)

Khoảng cách giữa 2 sóng mang trực giao cạnh nhau sẽ là f 1/TN.

Ở đây dấu * chỉ liên hiệp phức. Ví dụ nếu tín hiệu là sin(mx) với m=1,2,3….thì nó trực giao trong khoảng từ - đến +.

Việc xử lý (điều chế và giải điều chế) tín hiệu OFDM được thực hiện trong miền tần số, bằng cách sử dụng các thuật toán xử lý tín hiệu số DSP (Digital-Signal-Processing). Trong toán học, số hạng trực giao có được từ việc nghiên cứu các vector. Theo định nghĩa, hai vector được gọi là trực giao với nhau khi chúng vuông góc với nhau và tích vô hướng giữa chúng bằng 0.

Điểm chính ở đây là ý tưởng nhân 2 hàm số với nhau, tổng hợp các tích và nhận được kết quả bằng 0.

Hình 2.1: Tích của 2 vector trực giao bằng 0.

Nếu chúng ta cộng bán kì âm và dương của dạng ong sin ta sẽ có được kết quả bằng 0. Diện tích của 1 sóng sin có thể được viết:

0 ) sin( 2 0   k dt t   (2.3)

Hình 2.2: Giá trị trung bình của ong sin bằng 0.

Nếu chúng ta nhận hay cộng (tích phân) hai dạng sóng sin có tần số khác nhau ta nhận được kết quả bằng 0, nếu cùng tần số thì kết quả khác 0.

Hình 2.3: Tích phân của 2 sóng sin khác tần số.

Điều này gọi là tính trực giao của dạng sóng sin. Nó cho thấy rằng miễn là 2 sóng sin khác tần số thì tích phân của chúng sẽ bằng 0. Đây chính là cơ sở then chốt của quá trình điều chế OFDM.

Nếu 2 sóng sin cùng tần số :

Hình 2.4: Tích phân 2 sóng sin cùng tần số. (adsbygoogle = window.adsbygoogle || []).push({});

Nếu 2 sóng sin có cùng tần số như nhau thì dạng sóng hợp thành luôn luôn dương, giá trị trung bình của nó luôn luôn khác 0. Đây chính là cơ sở của quá trình giải điều chế tín hiệu OFDM. Các máy thu biến đổi tín hiệu thu được từ miền tần số nhờ sử dụng kĩ

Việc giải điều chế chặc chẽ được thực hiện kế tiếp trong miền tần số bằng cách nhân một sóng mang được tạo ra trong máy thu đơn với một sóng mang được tạo ra trong máy thu có cùng tần số và pha. Sau đó phép tích phân sẽ làm tất cả các ong mang bằng 0 ngoại trừ ong mang cần điều chế.

2.2.1.2 Tiền tố vòng CP (Cyclic prefix):

Tiền tố vòng CP (Cyclic prefix) có thể hoàn toàn loại bỏ nhiễu xuyên kí tự ISI miễn là thời lượng CP lâu hơn trễ lan truyền. CP chính là sự lặp lại phần dữ liệu gồm các mẫu cuối của khối được gắn vào trước một tải tin. Chính CP chống lại nhiễu liên khối và làm kênh quay vòng và cho phép cân bằng miền tần số với độ phức tạp thấp.

Hình 2.5: Mô tả tiền tố vòng (Cyclic prefix).

Tuy vậy một hạn chế của CP là nó được thêm vào trước tải tin làm giảm hiệu suất sử dụng băng thông. CP không chỉ làm giảm hiệu suất băng thông, ảnh hưởng của CP cũng tương tự như hệ số roll-off trong các hệ thống ong mang đơn được lọc cosin nâng.

Do OFDM có một phổ “tường gạch” đan xen rất nhọn, một tỉ lệ lớn các băng thông kênh cấp phát có thể được sử dụng cho truyền số liệu, giúp làm giảm suy hao hiệu suất do tiền tố vòng CP.

OFDM khai thác sự phân tập tần số của kênh đa đường bằng cách mã hoá và chèn thông tin trên các ong mang con trước khi truyền đi. Điều chế OFDM có thể thực hiện được với biến đổi ngược Forrier nhanh –IFFT, phép biến đổi này cho phép một số lượng lớn các ong mang con (lên tới 2048) với độ phức tạp thấp.

Trong một hệ thống OFDM, tài nguyên sẵn có trong miền thời gian chính là các sysbol OFDM và trong miền tần số chính là các ong mang con. Tài nguyên về thời gian và tần số có thể được tổ chức thành các kênh con (sub-channel) cấp phát cho người ong.

OFDMA là một nguyên lý đa truy nhập-ghép kênh cung cấp khả năng ghép kênh các luồng dữ liệu từ nhiều người ong trên các kênh con hướng xuống và đa truy nhập hướng lên nhờ các kênh con hướng lên.

2.2.1.3 biểu tượng pilot:

Các biểu tượng Pilot đóng vài trò quan trọng trong việc cân bằng và ước lượng kênh. Trong quá trình truyền tín hiệu, máy thu và máy phát cần phải báo cho nhau về tình trạng của kênh hay về tham số của bộ giải điều chế được sử dụng cho gói tin đã nhận được … thông tin này có thể lấy trong bản ong sysbol OFDM nhờ các ong mang Pilot.

2.3 Kĩ thuật OFDMA trong WIMAX:

2.3.1 Cấu trúc biểu tượng OFDMA và kênh con hoá:

Cấu trúc biểu tượng OFDMA gồm 3 loại ong mang con như hình 2.6:  ong mang con dữ liệu (Dat) cho truyền dữ liệu.

 ong mang con dẫn đường (Pilot) cho mục đích ước lượng và đồng bộ.

 ong mang con vô dụng (Null) không để truyền dẫn, được sử dụng cho các băng bảo vệ và các ong mang DC.

Hình 2.6: Cấu trúc ong mang con OFDMA.

Các kênh con tích cực (dữ liệu và dẫn đường) được nhóm lại thành các tập con các ong mang con gọi là các kênh. OFDMA PHY hỗ trợ kênh con hoá ở cả hướng xuống DL và hướng lên UL. Đơn vị tài nguyên tần số thời gian tối thiểu là một khe bằng với 48 âm điệu dự liệu (các ong mang con).

Có 2 kiểu hoán vị các kiểu sóng mang con cho kênh con hoá: phân tập (Diversity) và lân cận (Contiguous). Hoán vị phân tập kéo theo các ong mang con ngẫu nhiên tạo thành các kênh con. Nó cung cấp phân tập tần số và lấy trung bình nhiễu liên tế bào. Các hoán vị phân tập gồm DL FUSC (Fully used sub-carrier: ong mang con sử dụng hoàn toàn), DL PUSC (Patially used sub-carrier: ong mang con sử dụng một phần) và UL PUSC và các hoán vị tuỳ chọn thêm vào.

Với DL PUSC, mỗi cặp biểu tượng OFDM, các ong mang con khả dụng được nhóm lại thành các cluster chứa 14 sóng mang con lân cận trên mỗi khoảng thời gian của biểu tượng, với cấp phát dữ liệu và dẫn đường trong mỗi Cluster trong các biểu tượng chẵn và lẻ như mô tả ở hình 2.7.

Hình 2.7: Tần số DL gồm nhiều kênh con.

Một nguyên lý săp xếp lại được sử dụng để tạo thành các nhóm cluster chẳng hạn mỗi nhóm được tạo thành bởi các cluster được phân bố qua không gian các ong mang con.

Mỗi kênh con trong một nhóm chứa 2 cluster và được tạo bởi 48 sóng mang con và 8 sóng mang dẫn đường (Pilot). Các ong mang dữ liệu trong mỗi nhóm được tiếp tục hoán vị để tạo thành các kênh con trong phạm vi nhóm.

Vì vậy, chỉ các vị trí dẫn đường trong cluster là được biểu thị trong hình 2.8. Các ong mang con dữ liệu trong các cluster được phân bố cho nhiều kênh con.

Cấu trúc cluster cho DL, một cấu trúc lát (tile) được định nghĩa cho UL PUSC có định dạng như hình 2.8.

Hình 2.8: Cấu trúc Tile cho đường lên UL PUSC.

Không gian ong mang con khả dụng sẽ được chia thành các lát (Tile) và 6 lát được chọn từ toàn bộ phổ theo nguyên lý hoán vị \ sắp xếp lại. Và được nhóm lại với nhau tạo thành khe (slot). Một slot gồm 48 sóng mang con dữ liệu và 24 sóng mang con dẫn đường trong 3 biểu tượng OFDM. (adsbygoogle = window.adsbygoogle || []).push({});

Hoán vị lân cận nhóm một khối các ong mang lân cận tạo thành một kênh con. Các hoán vị lân cận gồm AMC hướng DL và AMC hướng UL có cùng cấu trúc. Trong một biểu tượng có 9 sóng mang con lân cận gọi là BIN, với 8 trong số đó được ấn định cho dữ liệu và một được ấn định cho dẫn đường ( Pilot ).

Một slot trong AMC được định nghĩa như một tập các Bin của kiểu (NxM=6), trong đó N là số các Bin lân cận và M là số các biểu tượng lân cận. Do vậy các tổ hợp cho phép là ( 6 Bin, 1 sysbol ).

2.3.2 Scalable OFDMA:

Chế độ OFDM cho mạng không dây diện rộng (Wireless MAN) theo chuẩn IEEE 16-e dựa trên kĩ thuật S-OFDMA. S-OFDMA hỗ trợ nhiều dải băng thông khác nhau để xác định hoạt động nhu cầu cấp phát phổ khác nhau và các yêu cầu mô hình sử dụng. Khả năng tỉ lệ được hỗ trợ nhờ điều chỉnh kích thước FFT trong khi vẫn giữ nguyên độ rộng băng tần ong mang con là 10.94 Khz.

Do vậy băng thông ong mang con theo đơn vị tài nguyên và độ dài của sysbol là cố định, ảnh hưởng của các lớp cao hơn cũng được tối thiểu hoá khi lấy tỷ lệ băng thông. Các tham số S-OFDMA được liệt kê trong bảng 1. Các băng thông hệ thống cho 2 hồ sơ mà nhóm kĩ thuật WIMAX Forum đưa ra lần đầu là 5 và 10 Mhz.

2.3.3 Cấu trúc khung TDD:

Chuẩn 802.16e hỗ trợ TDD và FDD bán song công, tuy nhiên phê chuẩn WIMAX di động đưa ra lần đầu tiên chỉ có TDD. Với những phát hành sắp tới, WIMAX Forum sẽ đề cập đến FDD cho các thị trường xác định-nơi mà các yêu cầu ổn định phổ cục bộ sẽ hoặc kế thừa TDD hoặc sẽ triển khai FDD.

Đối với các vấn đề nhiễu, TDD không yêu cầu sự đồng bộ ở diện rộng, trái lại TDD sẽ ưu tiên chế độ song công bởi các lý do:

 TDD cho phép điều chỉnh tỉ lệ UL/DL để hỗ trợ hiệu quả lưu lượng không đối xứng giữa đường xuống và đường lên (với FDD thì tỉ lệ đường xuống và đường lên là không đổi và thường là bằng băng thông của đường xuống và đường lên).  TDD đảm bảo sự trao đổi kênh để: hỗ trợ khả năng điều chỉnh đường truyền,

MIMO và các công nghệ anten vòng kín cao cấp khác.

 Không như FDD yêu cầu một cặp kênh, TDD chỉ yêu cầu một kênh đơn cho cả đường lên và đường xuống đem lại khả năng điều chỉnh linh động sự cấp phát tần số toàn cục.

Hình 2.9: Cấu trúc khung WIMAX OFDMA.

Hình 14 mô tả cấu trúc khung OFDM ở chế độ TDD. Mỗi khung được chia thành các khung con hướng xuống (DL) và hướng lên (UL) bởi bộ phát/thu và thu/phát (TTG và RTG ) để tránh xung đột giữa hướng lên và hướng xuống. Trong một khung, thông tin điều khiển ong để đảm bảo hoạt động hệ thống được tối ưu:

 Phần đầu khung (Preamble): là biểu tượng OFDM đầu tiên của khung ong để đồng bộ.

 Tiêu đề điều khiển khung (FCH): FCH nằm sau phần mở đầu khung. Nó cho biết thông tin cấu hình khung như độ dài bản tin MAP, nguyên lý mã hoá và các kênh con khả dụng.

 DL-MAP và UL-MAP: DL-MAP và UL-MAP cho biết cấp phát kênh con và các thông tin điều khiển khác lần lượt cho các khung con DL và UL.

 Sắp xếp UL: kênh con sắp xếp cho UL được cấp phát cho trạm di động MS để thực hiện điều chỉnh: thời gian vòng kín, tần số và công suất cung cấp cũng như yêu cầu băng thông.

 UL ACK: kênh UL ACK cấp cho MS để xác nhận phản hồi DL HARQ.

2.3.4 Các đặc tính lớp vật lý cao cấp khác:

WIMAX di động đưa ra các kĩ thuật: AMC-điều chế thích nghi và mã hoá, HARQ-yêu cầu tự động lặp lại tự động lại kiểu kết hợp, CQICH-phản hồi kênh nhanh để nâng cao khả năng phủ ong, dung lượng cho WIMAX trong các ứng dụng di động.

Trong WIMAX di động ở đường xuống, bắt buộc phải có các hỗ trợ điều chế QPSK, 16 QAM và 64 QAM, còn ở đường lên, 64 QAM là tuỳ chọn. Cả mã hoá vòng và mã hoá Turbo vòng với tốc độ mã thay đổi và mã lặp cũng được hỗ trợ.

Ngoài ra, mã khối Turbo và mã kiểm tra chẵn lẻ mức độ thấp (LDPC) cũng được hỗ trợ tuỳ chọn. Bảng 2 tổng kết các nguyên lý mã hoá và điều chế hỗ trợ trong WIMAX di động (điều chế và mã hoá hướng lên tuỳ chọn được in nghiêng).

Sự tổ hợp các kĩ thuật điều chế và các tốc độ mã đem lại sự tinh phân giải tốc độ dữ liệu như minh hoạ trong bảng 3 (với độ rộng các kênh là 5 Mhz và 10 Mhz với các kênh con PUSC), độ dài khung là 5ms.

Mỗi khung có 48 biểu trưng OFDM gồm 44 biểu trưng OFDM sẵn ong để truyền dữ liệu. Các giá trị được đánh dấu màu là để chỉ các tốc độ cho kĩ thuật 64 QAM tuỳ chọn ở đường lên.

Bộ lập lịch trạm gốc xác định tốc độ dữ liệu phù hợp cho mỗi cấp phát cụm (burst) dựa

Một phần của tài liệu ước lượng kênh trong ofdm của wimax (Trang 26 - 71)