Hướng nghiên cứu trong tương lai

Một phần của tài liệu Luận văn thạc sĩ UEH đánh giá tác động của tham nhũng vào luồng vốn đầu tư trực tiếp nước ngoài chảy vào các quốc gia đông nam á (Trang 58 - 68)

CHƯƠNG 6 : KẾT LUẬ N– KIẾN NGHỊ

6.4. Hướng nghiên cứu trong tương lai

Trong suốt quá trình viết nghiên cứu đề tài này tồn tại một số khía cạnh bị hạn chế do nguồn tài liệu, năng lực và thời gian. Một số hạn chế đã được đề cập trong nội dung nghiên cứu, một số vấn đề nên được tiếp tục thực hiện trong thời gian tiếp theo về đề tài nghiên cứu này:

Đầu tiên là cần thu thập dữ liệu đầy đủ hơn về các loại tham nhũng khác nhau (tham nhũng chính trị, tham nhũng hành chính, tham nhũng kinh tế,…). Điều này sẽ làm tăng đáng kể chất lượng của dữ liệu nghiên cứu, tăng độ tin cậy khi thực hiện phân tích định lượng. Từ đó có thể nghiên cứu tác động của từng loại hình tham nhũng đối với dịng vốn đầu tư nước ngồi.

Thứ hai, dựa trên các cơ sở lý thuyết về mối quan hệ giữa dòng vốn FDI và tham nhũng, thực hiện phân tích bằng các mơ hinh kiểm định, phương pháp nghiên cứu khác. Từ đó so sánh, đối chiếu kết quả đạt được để nhận định những tác động mới hoặc đề xuất giải pháp nghiên cứu phù hợp hơn.

Thứ ba, có thể mở rộng hướng nghiên cứu xem xét tác động ngược trở lại của đầu tư trực tiếp nước ngoài vào tham nhũng ở mỗi quốc gia.

Thứ tư, đánh giá tác động của tham nhũng vào từng ngành, lĩnh vực cụ thể. Từ đó đưa ra cái nhìn tổng quan nhất về tham nhũng đối với toàn bộ nền kinh tế. Đề xuất giải pháp phù hợp cho từng lĩnh vực, ngành nghề khác nhau.

TÀI LIỆU THAM KHẢO

Aidt, Toke S. (2003). Economic Analysis of Corruption: A Survey. Economic Journal 113 (No. 491 2003): 632-52.

AKIN, M. (2009). How Is the Market Size Relevant as a Determinant of FDI in Developing Countries? A Research on Population and the Cohort Size. International Symposium on Sustainable Development, June 9-10 2009, Sarajevo.

Alemu, A. (2012). Effects of Corruption on FDI Inflow in Asian Economies. Seoul Journal of Economics 2012, Vol. 25, No. 4

Ardiyanto, F. (2012). Foreign direct investment and corruption. PhD thesis. Colarado State University

ASEAN Investment Report 2016 - Foreign Direct Investment and MSME Linkages. Jakarta: ASEAN Secretariat, September 2016.

ASEAN Investment Report 2017 - Foreign Direct Investment and Economic Zones in ASEAN). Jakarta: ASEAN Secretariat, October 2017.

Bardhan, P. (1997), Corruption and Development: A Review of Issues. Journal of Economic Literature, 35(3), 1320-46.

Beck, P., and Maher, M. W. (1986). A Comparison of Bribery and Bidding in Thin Markets. Economic Letters 20 (No. 1 1986): 1-5.

Bliss, C., and Di Tella, R. (1997). Does Competition Kills Corruption. The Journal of Political Economy 105 (No. 5 1997): 1001-23.

Blomström, M. and Kokko, A. (2002). FDI and Human Capital: A Research Agenda. OECD DEVELOPMENT CENTRE Working Paper No. 195

Braguinsky, S. (1996), Corruption and Schumpeterian Growth in Different Economic Environments. Contemporary Economic Policy, Vol. 14 (3), 14-25.

Chakrabarti, A. (2001). The Determinant of Foreign Direct Investment: Sensivity Analysses of Cross-Country Regression. Kyklos, 54 (1), 89-114.

Chen, Zhaohui, and Khan, Mohsin. Patterns of Capital Flows to Emerging Markets: A Theoretical Perspective. IMF Working Paper WP/97/13, 1997.

Cuervo-Cazurra, A. (2008). Better the devil you don‘t know: Type of corruption and FDI in transition economies. Journal of International Management, 12–27.

Drabek, Z., & Payne, W. (1999). The Impact of Transparency on Foreign Direct Investment. Staff Working Paper ERAD-99-02, Geneva: World Trade Organization.

Drukker, D. M. (2003). Testing for serial correlation in linear panel-data models. Stata Journal (3)2, 168-177.

Dunning, J. H. (1977). Trade, location of economic activity and the MNE: A search for an eclectic approach. In B. Ohlin, P. O. Hesselborn, & P. M. Wijkman, The international allocation of economic activity (pp. 395–418). London: Macmillan.

Fan, J., Morck, R., Xu, L., and Yeung, B. (2007). Does Good Government Draw Foreign Capital? Explaining China’s Exceptional FDI Inflow. World Bank Policy Research Paper No. 4206, 2007.

Gupta, S., Davoodi, H., & Alonso-Terme, R. (1998). Does Corruption Affect Income Inequality and Poverty? IMF Working Paper, 98(76), 1-41.

Habib, M., & Zurawicki, L. (2002). Corruption and foreign direct investment. Journal of International Business Review, 33(2), 291–307.

Heritage Foundation. Index of economic freedom.

(https://www.heritage.org/index/freedom-from-corruption)

Hossain, S. (2016). Foreign direct investment (FDI) and corruption: Is it a major hindrance for encouraging inward FDI?. African Journal of Business Management, Vol. 10(10), pp. 256-269

https://www.wto.org/english/news_e/pres96_e/pr057_e.htm

Huntington, S. (1968), Political Order in Changing Societies. New Haven, CT: Yale University Press.

SAJEMS NS 9 (2006) No 3

Ketkar, K., Murtuza, A., Ketkar, S. (2005), Impact of Corruption of Foreign Direct Investment and Tax Revenues. Journal of Public Budgeting Accounting and Financial Management, 17(3), 313-340

Khachoo, A.Q, M.I, Khan, 2012. Determinants of FDI inflows to developing countries: a panel dataanalysis [pdf] Available at: <http://mpra.ub.uni- muenchen.de/37278/1/MPRA_paper_37278.pdf> [Accessed 2 September 2014].

Leff, N. (1964), Economic Development through Bureaucratic Corruption. American Behavioral Scientist, Vol. 8(3), 8-14.

Lui, F. T. “An Equilibrium Queuing Model of Bribery.” Journal of Political Economy 93 (No. 4 1985): 760-81.

Mbekeani, K. Foreign Direct Investment and Economic Growth. NIEPO Occasional Paper Series, 1997.

Miyamoto, K. (2003). Human capital formation and foreign direct investment in developing countries. Oecd development centre Working Paper No. 211

ODI, 1997. Foreign direct investment flows to low-income Countries: a review of the evidence [pdf] Available at: <http://www.odi.org/sites/odi.org.uk/files/odi assets/publications-opinionfiles/2626.pdf > [Accessed 29 September 2014]

Pablo, M. P., & Boliang, Z. (2016). Fortune or Evil? The Effect of Inward Foreign Direct Investment on Corruption. International Studies Quarterly (2016) 60, 693–705

Quazi, R. M. (2014). Corruption and Foreign Direct Investment in East Asia and South Asia: An Econometric Study. International Journal of Economics and Financial Issues, 4(2), 231-242.

Rashid, S. (1981), Public Utilities in Egalitarian LDC’s: The Role of Bribery in Achieving Pareto Efficiency. Kyklos, 34, 448-460.

Investment? A Study of Rising Economic Super Powers China and India. Open Journal of Social Sciences, 2015, 3, 99-104

Saha, B. Red Tape, Incentive Bribe, and the Provision of Subsidy. Journal of Development Economics 65 (No. 1 2001): 113-33.

SHAH, Z. and AHMED, Q.M., 2003. The Determinants of Foreign Direct Investment in Pakistan: An Empirical Investigation. The Pakistan Development Review, 42(4), pp. 697-714.

Shatz, H., and Venables, A. J. The Geography of International Investment. World Bank Policy Research Working Paper No. 2338, 2000

Shleifer, A., and Vishny, R. “Pervasive Shortages under Socialism.” The RAND Journal of Economics 23 (No. 2 1992): 237-46.

Stephan, Constantin (2012), Industrial Health, Safety and Environmental Management, MV Wissenschaft, Muenster, 3rd edition 2012, pp. 26-28, ISBN 978-3- 86582-452-3

Tavares, J., & Larrain, F. B. (2004). Does Foreign Direct Investment Decrease Corruption?.Cuadernos De Economia, 41, 217-230.

Transparency International. Corruption Perceptions Index.

(http://www.transparency.org/research/cpi/overview)

Vittal, N. (2001). Corruption and the State. Harvard International Review 23 (No. 3 2001): 20-5.

Voyer, P.A., P.W. Beamish, 2004. The effect of corruption on Japanese foreign direct investment. Journal of Business Ethics, 50(3):211-224.

Wei, S. (2000b). Local corruption and global capital flows. Brookings Papers on Economic Activity, 303–354.

Wei, S-J., 2000a. How taxing is corruption on international investors?. Review of Economics-and-Statistics, 82(1):1-11.

Decisions: The Case of US Firms.” Journal of International Economics 33 (Nos. 1-2 1992): 57-76.

White, H. (1980), A Heteroscedasticity-Consistent Covariance Matrix Es timator and a Direct Test for Heteroscedasticity. Econometrica 48, 817-838.

Wooldridge, J. M. (2002). Econometric Analysis of Cross Section and Panel Data. Cambridge, MA: MIT Press

World bank. World Development Indicators.

(http://data.worldbank.org/indicator)

Zhao, J., Kim, S., & Du, J. (2003). The Impact of Corruption and Transparency on Foreign Direct Investment: An Empirical Analysis. Management International Review, 43(1), 41-62.

Variable Obs Mean Std. Dev. Min Max FDI 230 5.010047 5.222044 -2.75744 26.52121 FFC 230 36.00594 23.34916 10 94 GDP 230 5.530498 3.684158 -13.12673 15.24038 AGE 230 70.07008 6.229147 55.189 82.79512 EDU 230 68.65944 23.82539 16.60103 120.6316 PPP 230 8.21796 13.60637 .1389249 57.7143 PORT 230 4.027741 1.306326 2.178439 6.830574 RATE 230 12.18533 7.029999 4.33404 32.15417 TRADE 230 124.4661 93.84274 .1674176 441.6038

2 . reg FDI FFC GDP AGE EDU PPP PORT RATE TRADE

Source SS df MS Number of obs = 230 F( 8, 221) = 72.76 Model 4526.22937 8 565.778672 Prob > F = 0.0000 Residual 1718.54234 221 7.77620967 R-squared = 0.7248 Adj R-squared = 0.7148 Total 6244.77171 229 27.2697455 Root MSE = 2.7886 FDI Coef. Std. Err. t P>|t| [95% Conf. Interval]

FFC -.0408588 .0263024 -1.55 0.122 -.0926944 .0109767 GDP .2799161 .0586314 4.77 0.000 .1643679 .3954643 AGE .1309795 .0758014 1.73 0.085 -.0184066 .2803656 EDU -.0687374 .0174884 -3.93 0.000 -.1032029 -.0342719 PPP .170663 .0247375 6.90 0.000 .1219115 .2194145 PORT -.5602147 .3860689 -1.45 0.148 -1.321062 .200633 RATE .0434894 .0544361 0.80 0.425 -.0637909 .1507697 TRADE .0467906 .0048829 9.58 0.000 .0371676 .0564136 _cons -5.025013 5.492363 -0.91 0.361 -15.84912 5.799096 3 . vif

Variable VIF 1/VIF FFC 11.11 0.090033 PORT 7.49 0.133506 AGE 6.57 0.152307 TRADE 6.18 0.161724 EDU 5.11 0.195592 RATE 4.31 0.231872 PPP 3.34 0.299735 GDP 1.37 0.727772 Mean VIF 5.69

4 . xtreg LNFDI l.FFC l.LNGDP l.AGE l.EDU l.PPP l.PORT l.RATE l.TRADE, fe

Fixed-effects (within) regression Number of obs = 207 Group variable: Year Number of groups = 23 R-sq: within = 0.4402 Obs per group: min = 9 between = 0.0593 avg = 9.0 overall = 0.3866 max = 9 F(8,176) = 17.30 corr(u_i, Xb) = -0.0994 Prob > F = 0.0000

LNGDP L1. .0887362 .0887294 1.00 0.319 -.0863744 .2638467 AGE L1. -.0235044 .0338069 -0.70 0.488 -.0902234 .0432146 EDU L1. .016819 .0056607 2.97 0.003 .0056474 .0279906 PPP L1. -.0146727 .0080179 -1.83 0.069 -.0304963 .0011509 PORT L1. -.9019008 .1209119 -7.46 0.000 -1.140525 -.663277 RATE L1. -.0686409 .015297 -4.49 0.000 -.0988302 -.0384517 TRADE L1. .0030331 .001535 1.98 0.050 3.84e-06 .0060624 _cons 5.373825 2.054888 2.62 0.010 1.318432 9.429218 sigma_u .34348031 sigma_e .7548377

rho .17154088 (fraction of variance due to u_i)

F test that all u_i=0: F(22, 176) = 1.70 Prob > F = 0.0315 5 . xttest3

Modified Wald test for groupwise heteroskedasticity in fixed effect regression model

H0: sigma(i)^2 = sigma^2 for all i chi2 (23) = 156.55

Prob>chi2 = 0.0000

6 . xtreg LNFDI l.FFC l.LNGDP l.AGE l.EDU l.PPP l.PORT l.RATE l.TRADE, fe

Fixed-effects (within) regression Number of obs = 207 Group variable: Year Number of groups = 23 R-sq: within = 0.4402 Obs per group: min = 9 between = 0.0593 avg = 9.0 overall = 0.3866 max = 9 F(8,176) = 17.30 corr(u_i, Xb) = -0.0994 Prob > F = 0.0000

LNGDP L1. .0887362 .0887294 1.00 0.319 -.0863744 .2638467 AGE L1. -.0235044 .0338069 -0.70 0.488 -.0902234 .0432146 EDU L1. .016819 .0056607 2.97 0.003 .0056474 .0279906 PPP L1. -.0146727 .0080179 -1.83 0.069 -.0304963 .0011509 PORT L1. -.9019008 .1209119 -7.46 0.000 -1.140525 -.663277 RATE L1. -.0686409 .015297 -4.49 0.000 -.0988302 -.0384517 TRADE L1. .0030331 .001535 1.98 0.050 3.84e-06 .0060624 _cons 5.373825 2.054888 2.62 0.010 1.318432 9.429218 sigma_u .34348031 sigma_e .7548377

rho .17154088 (fraction of variance due to u_i)

F test that all u_i=0: F(22, 176) = 1.70 Prob > F = 0.0315 7 . xtserial LNFDI FFC LNGDP AGE EDU PPP PORT RATE TRADE

Wooldridge test for autocorrelation in panel data H0: no first-order autocorrelation

F( 1, 22) = 0.800 Prob > F = 0.3809

8 . xtreg LNFDI l.FFC l.LNGDP l.AGE l.EDU l.PPP l.PORT l.RATE l.TRADE, fe robust Fixed-effects (within) regression Number of obs = 207 Group variable: Year Number of groups = 23 R-sq: within = 0.4402 Obs per group: min = 9 between = 0.0593 avg = 9.0 overall = 0.3866 max = 9

F(8,22) = 40.31

corr(u_i, Xb) = -0.0994 Prob > F = 0.0000 (Std. Err. adjusted for 23 clusters in Year) Robust

LNFDI Coef. Std. Err. t P>|t| [95% Conf. Interval] FFC L1. .0136919 .0066671 2.05 0.052 -.0001348 .0275186 LNGDP L1. .0887362 .0642313 1.38 0.181 -.0444715 .2219438 AGE -.0235044 .0263725 -0.89 0.382 -.0781976 .0311888

L1. -.0146727 .0050804 -2.89 0.009 -.0252088 -.0041366 PORT L1. -.9019008 .1160588 -7.77 0.000 -1.142592 -.6612096 RATE L1. -.0686409 .0138641 -4.95 0.000 -.0973934 -.0398885 TRADE L1. .0030331 .0013275 2.28 0.032 .00028 .0057863 _cons 5.373825 1.617073 3.32 0.003 2.02022 8.727429 sigma_u .34348031 sigma_e .7548377

rho .17154088 (fraction of variance due to u_i)

9 . xtreg LNFDI l.FFC l.LNGDP l.AGE l.EDU l.PPP l.PORT l.RATE l.TRADE, re robust Random-effects GLS regression Number of obs = 207 Group variable: Year Number of groups = 23 R-sq: within = 0.4324 Obs per group: min = 9 between = 0.1196 avg = 9.0 overall = 0.3954 max = 9

Wald chi2(8) = 230.41

corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.0000 (Std. Err. adjusted for 23 clusters in Year) Robust

LNFDI Coef. Std. Err. z P>|z| [95% Conf. Interval] FFC L1. .0221763 .0053318 4.16 0.000 .0117262 .0326264 LNGDP L1. .1223375 .0572247 2.14 0.033 .0101792 .2344958 AGE L1. -.0459463 .0209664 -2.19 0.028 -.0870398 -.0048529 EDU L1. .0186978 .0047942 3.90 0.000 .0093014 .0280943 PPP L1. -.0133987 .00481 -2.79 0.005 -.022826 -.0039713 PORT L1. -.8212891 .1267314 -6.48 0.000 -1.069678 -.5729002 RATE L1. -.0562635 .0162775 -3.46 0.001 -.0881669 -.0243601 TRADE L1. .0012408 .0012259 1.01 0.311 -.0011619 .0036434 _cons 6.163277 1.26534 4.87 0.000 3.683256 8.643298 sigma_u 0

Cross-sectional time-series FGLS regression Coefficients: generalized least squares Panels: heteroskedastic

Correlation: no autocorrelation

Estimated covariances = 23 Number of obs = 207 Estimated autocorrelations = 0 Number of groups = 23 Estimated coefficients = 9 Time periods = 9 Wald chi2(8) = 203.96 Prob > chi2 = 0.0000 LNFDI Coef. Std. Err. z P>|z| [95% Conf. Interval] FFC L1. .0196675 .0058595 3.36 0.001 .008183 .0311519 LNGDP L1. .1055424 .07581 1.39 0.164 -.0430425 .2541273 AGE L1. -.0548129 .0248139 -2.21 0.027 -.1034473 -.0061785 EDU L1. .0137997 .0042893 3.22 0.001 .0053928 .0222065 PPP L1. -.0103559 .0059754 -1.73 0.083 -.0220675 .0013557 PORT L1. -.7841459 .0932987 -8.40 0.000 -.9670079 -.6012838 RATE L1. -.0695382 .0127421 -5.46 0.000 -.0945123 -.0445642 TRADE L1. .0014544 .0011758 1.24 0.216 -.0008502 .003759 _cons 7.259514 1.55135 4.68 0.000 4.218923 10.3001 11 .

Một phần của tài liệu Luận văn thạc sĩ UEH đánh giá tác động của tham nhũng vào luồng vốn đầu tư trực tiếp nước ngoài chảy vào các quốc gia đông nam á (Trang 58 - 68)

Tải bản đầy đủ (PDF)

(68 trang)