HỆ QUẢ CỦA ĐỊNH LÍ VIET

Một phần của tài liệu Chuyên đề phương trình bậc 2 và định lý vi ét (Trang 48 - 49)

Bài 1. Cho phương trỡnh x2 – 2mx + m – 1 = 0. Tỡm m để phương trỡnh cú hai nghiệm phõn biệt x1, x2 thỏa món x1 + x2 =2

Bài 2. Cho phương trỡnh x2 – (2m + 5)x + 2m + 1 = 0. Tỡm m để phương trỡnh cú hai nghiệm phõn biệt x1, x2 mà biểu thức 1 2

M = xx

đạt giỏ trị nhỏ nhất.

Bài 3. Cho phương trỡnh x2 – 5x + m – 1 = 0. Tỡm m để phương trỡnh cú hai nghiệm phõn biệt x1, x2 sao cho 2x1 = x2

Bài 4. Cho phương trỡnh x2 – (m + 5)x + 3m + 6 = 0. Tỡm m để phương trỡnh cú hai nghiệm phõn biệt x1, x2 :

+ Là độ dài hai cạnh gúc vuụng của một tam giỏc vuụng cú độ dài cạnh huyền bằng 5. + Là độ dài hai cạnh gúc vuụng của một tam giỏc vuụng cõn

Bài 5. Cho phương trỡnh x2 + (m + 2)x – m – 4 = 0. Tỡm m để phương trỡnh cú hai nghiệm phõn biệt x1, x2 thỏa món x1 < 0 ≤ x2

Bài 6. Cho phương trỡnh x2 + (m – 2)x + m – 5 = 0. Tỡm m để phương trỡnh cú hai nghiệm phõn biệt x1, x2 thỏa món x1 ≤ 0 < x2

Bài 7. Cho phương trỡnh x2 + 2mx + 4m – 4 = 0. Tỡm m để phương trỡnh cú hai nghiệm phõn biệt x1, x2 thỏa món x1 <2, x2 < 2

Bài 8. Cho phương trỡnh x2 – (m + 3)x + m – 1 = 0. Tỡm m để phương trỡnh cú hai nghiệm phõn biệt x1, x2 thỏa món

1 2

32 2

x < − <x

Bài 9. Tỡm m để phương trỡnh sau cú nghiệm:

7 33 3 x m m x − − = −

Bài 10. Cho phương trỡnh 2 1

x x m x

− =

Tỡm m để phương trỡnh đó cho cú hai nghiệm phõn biệt

Một phần của tài liệu Chuyên đề phương trình bậc 2 và định lý vi ét (Trang 48 - 49)

Tải bản đầy đủ (DOCX)

(51 trang)
w