3.3.1.b ActiveDecisions.com
Trong môi trường mua bán qua mạng, người dùng thường không thể đánh giá tất cả các tiêu chuẩn so sánh ở mức sâu. Việc này đòi hỏi nhiều thời gian và thao tác
phức tạp. Do đó các trang web đưa ra kịch bản xử lý theo 2 bước để đạt được sự hỗ trợ khách hàng ở mức sâu. Bước đầu tiên, khách hàng thường được đưa ra một bộ gồm nhiều các sản phẩm và chỉ ra một bộ con các lựa chọn tốt. Sau đó, các lựa chọn này sẽ được đánh giá ở độ sâu hơn, thực hiện các so sánh các sản phẩm trên các thuộc tính quan trọng và ra quyết định mua. Một chương trình đóng vai trị là người đề nghị (Recommender Agent-RA) sẽ trợ giúp cho khách hàng trong bước đầu tiên, đưa ra các sản phẩm lựa chọn. Dựa vào các thông tin cung cấp đã khảo sát trước hoặc chính từ người mua hàng đối với sở thích của họ mà RA sẽ đề xuất một bộ sản phẩm hấp dẫn nhất đối với cá nhân đó. Các hướng tiếp cận sở thích người dùng có thể chia ra thành hai nhóm: hướng đặc tính và hướng nhu cầu. Một hệ thống theo hướng đặc tính thường yêu cầu khách hàng chỉ ra các sở thích về đặc tính của sản phẩm như: môt máy chụp ảnh kỹ thuật số phải có độ phân giải ít nhất là 4 Mega Pixel. Các tiếp cận nhu cầu sẽ hỏi người dùng chỉ ra “Nhu cầu cá nhân của họ là gì?”. Ví dụ tôi cần chụp ảnh ngoại cảnh. Cách tiếp cập theo hướng nhu cầu nên là một phương pháp phù hợp để hỗ trợ cho người dùng chưa có kinh nghiệm chọn sản phẩm.
Active Decisions Inc. là nhà cung cấp hàng đầu thế giới các giải pháp hướng dẫn mua hàng. Ứng dụng cung cấp bởi Active Decisions đem lại cho bộ phận mua hàng, các chi nhánh và các ứng dụng tự phục vụ mục tiêu là lôi kéo càng nhiều khách hàng.
Kỹ thuật chính của Acitve Decisions được xem như là sự kết hợp của Recommender Agent (RA) và ma trận so sánh (Comparison Matrix-CM). Ma trận so sánh, sự trợ giúp tạo quyết định dạng thứ hai, là công cụ tương tác được đưa ra nhằm giúp người dùng trong các so sánh ở mức sâu hơn giữa các sản phẩm đã chọn ở bước một. Một dạng cơ bản của hướng trợ giúp ra quyết định này, thích hợp như một giỏ hàng hiển thị một ma trận các hàng là các sản phẩm và các cột là các thuộc tính quan trọng của sản phẩm. Thiết kế này cho phép người mua so sánh các giá trị của sản phẩm hiệu quả và chính xác hơn.
Hình 3.5 - Các câu hỏi về đặc tính máy in.
Các bước tiếp cận của kỹ thuật này thì đầu tiên khách hàng sẽ được hỏi họ tìm cái gì và cái gì là quan trọng với họ thông qua các hướng tiếp cận theo nhu cầu hay theo đặc tính, dựa vào đó đưa ra các đề xuất thích hợp cho khách hàng. Khách hàng sẽ chọn một vài sản phẩm đưa ra để so sánh ở mức cao hơn trong ma trận so sánh. Những sản phẩm được đề nghị cũng hiển thị với lời giải thích tại sao nó tốt cho người dùng. Một vài giải pháp của Active Decision sẽ được thấy ở các website www.absound.ca, www.qvc.com , www.sonystyle.com, www.jr.com và www.hpshopping.com. Chúng ta sẽ khảo sát một ví dụ của Active Decision ở website Hpshopping.com.
3.3.1.c Hpshopping.com
Hpshopping là một trang web giới thiệu các sản phẩm của hãng HP bao gồm máy tính, máy PDA, máy in. Trong phần này, chúng ta tập trung vào trang chọn mua máy in (printer). Các câu hỏi chuyên về tính năng sử dụng của máy in như số trang in, cỡ trang in thường dùng, cổng kết nối với máy tính, hệ điều hành của máy tính v.v… Kết quả là ba sản phẩm thích hợp nhất được hiển thị ở ma trận so
sánh với cột là các sản phẩm và dịng là các thuộc tính của sản phẩm máy in. Trong một số trường hợp HPShopping còn đưa ra một kết quả sản phẩm máy in. Trong một số trường hợp HPShopping còn đưa ra một kết quả mạnh hơn yêu cầu của người người dùng mà cịn có thêm một số tính năng khác. dùng. Kết quả này là một máy in khơng chỉ có đủ các đặc tính theo u cầu
Hình 3.6 - Các sản phẩm đề nghị của HP sau khi chọn trả lời cho các câu hỏi
3.4.1.f Samsungtelecom.com
Đây là trang hỗ trợ khách hàng tìm kiếm sản phẩm theo nhu cầu của khách hàng qua các câu hỏi cho người dùng lựa chọn. Nếu như ở website hpshopping.com các câu hỏi tập trung vào “Sản phẩm cần tìm có đặc điểm gì?“ thì ở đây các câu hỏi tập trung vào “Người dùng cần mua sản phẩm để làm gì?”. Dựa vào các lựa
chọn của khách hàng website đưa ra các điện thoại phù hợp với người dùng. Cuối cùng, sau q trình đề xuất các sản phẩm thích hợp, trang web sẽ hỏi ý kiến người dùng có thỏa mãn với những sản phẩm được đề xuất hay chưa.
Hình 3.7 - Các câu hỏi của samsungtelecom.com.
3.4.1.g Shopping.Yahoo.com/Smartsort
Shopping.yahoo.com là một trong những hệ thống mua sắm lớn nhất hiện nay. Ngồi các tính năng hỗ trợ tìm kiếm thơng thường như duyệt theo catalog, cho khách hàng đánh giá trên sản phẩm đã mua, người dùng cịn có thể tìm các sản phẩm theo sở thích, mục đích sử dụng qua tính năng Smartsort có trên trang web Yahoo!Shopping gồm nhiều loại mặt hàng trong đó phần Smartsort hỗ trợ các
mặt hàng đồ điện tử như điện thoại di động, digital camera, PDA, máy tính v.v… Phần khảo sát này ta tập trung vào mặt hàng điện thoại di động. Tính năng Smartsort của Yahoo!Shoppping hỗ trợ người dùng chọn mức độ quan trọng của các thuộc tính sản phẩm qua thanh kéo (slider bar). Người dùng đánh giá độ quan trọng của các đặc tính trên máy điện thoại di động như thời gian dùng pin, kích cỡ, nhà sản xuất, các tính năng giải trí khác v.v… Yahoo đưa ra 5 mức đánh giá độ quan trọng đối với tính năng của điện thoại di động như sau: khơng quan trọng (not important), ít quan trọng (sightly important), quan trọng (important), rất quan trọng (very important), hết sức quan trọng(most important). Kết quả đưa ra là 10 máy điện thoại di động được sắp xếp theo độ quan trọng của các tính năng đã đánh giá trước đây. Trong danh sách các máy điện thoại đưa ra người dùng có thể tiếp tục chọn vào danh sách so sánh tiếp theo. Một ma trận so sánh sẽ đưa ra giúp khách hàng dễ dàng so sánh.
3.4.2 Bảng tóm tắt và so sánh
STT Website Đặc điểm Mức hỗ
trợ đạt được
1 Amazon.com Các đặc tính hỗ trợ rất phong phú, hỗ trợ người dùng ở nhiều giai đoạn như tìm kiếm,
hướng dẫn mua.
3
2 Moviefinder.com Chỉ có 2 đặc điểm đơn giản là danh sách “Top 10” và đánh giá điểm cho mỗi phim.
2
3 Carsdirect.com Catalogue danh mục các xe chứa theo nhu cầu người mua.
2 4 Samsungtelecom.co
m
Danh sách các câu hỏi được đưa ra nhằm đánh giá nhu cầu người dung. Danh sách kết quả là ma trận so sánh khá hợp đã được sắp
xếp.
-
5 HpShopping.com Danh sách câu hỏi đưa ra cho khách hàng và ma trận so sánh của danh sách sản phẩm được đề nghị có nội dung và cách trình bày tốt.
3
6 Shopping.yahoo.co m/ Smartsort
Danh sách đánh giá độ quan trọng các tiêu chuẩn của sản phẩm đưa ra kết quả ngay lập tức.
3
3.5 Các tiện ích mà một trang web bán hàng cần cung cấp để có thể Hỗ trợ khách hàng tốt hơn
Qua các phần thống kê bên trên chúng ta thấy rằng “hỗ trợ khách hàng” vẫn là một sự thiếu hụt nghiêm trọng của các trang web bán hàng hiện nay.
Theo một cuộc khảo sát các người thường xuyên mua hàng qua mạng thì các tiện ích hỗ trợ khách hàng đóng vai trị then chốt trong việc gia tăng số lượng mua hàng qua mạng.
Các tiện ích mà các cửa hàng trên mạng cần cung cấp (tốt hơn)
Giá cả và hỗ trợ so sánh giá cả.
Tính bảo mật của các giao dịch.
Các dịch vụ hỗ trợ khách hàng trong việc mua và hồn trả hàng hóa.
Chương 4
Sử dụng giải thuật di truyền để giải quyết bài toán hỗ trợ chọn sản phẩm khi mua hàng qua mạng
4.1 Giới thiệu
Để xây dựng được một trang web bán hàng thật sự hồn hảo đó là sự kết hợp của rất nhiều yếu tố bao gồm sự quảng bá đến người dùng, giao diện người dùng, các tiện ích hỗ trợ khách hàng khi mua hàng, các dịch vụ giao hàng và hồn trả hàng. Trong khn khổ luận văn, chúng em cố gắng đưa ra một cách tiếp cận để xây dựng một trong những yếu tố trên “hỗ trợ khách hàng chọn sản phẩm khi mua hàng qua mạng”.
Chọn sản phẩm là một trong những phần quan trọng nhất khi mua hàng. Như chương trước đã phân tích một trong những ngun nhân chính dẫn đến sự khơng thành cơng của phương thức mua hàng qua mạng đó là người mua khơng thể chọn ra được một sản phẩm ưng ý nhất trước vô vàn các mặt hàng được bày ra. Vậy trang web chúng ta xây dựng phải có nhiệm vụ như một người bán hàng chuyên nghiệp đó là nắm bắt các nhu cầu của người mua và khuyến cáo cho người mua một số sản phẩm mà mình cho là thích hợp. Mặc dù quyết định cuối cùng vẫn thuộc về người ra quyết định, ở đây là người mua hàng, tuy nhiên một lời khuyên cho người dùng vẫn rất quan trọng.
4.2 Các khó khăn khi xây dựng một module hỗ trợ khách hàng chọn sản phẩm phẩm
Các khó khăn phi kỹ thuật:
Không giống như một người bán hàng thực, một người bán hàng có thể qua cách ứng xử, ăn mặc, thái độ v.v của người mua mà có thể chọn ra các mặt hàng cho phù hợp. Trang web bán hàng hồn tồn khơng biết gì về các thơng tin trên của khách hàng.
Người mua có thể tự do tương tác, trao đổi với người bán để nói lên nhu cầu, sở thích của mình. Trong khi mua hàng trên mạng thì yếu tố thời gian
là rất quan trọng, cần phải dung hòa giữa lượng thông tin cần thu thập và thời gian tiêu tốn của người dùng.
Trao đổi bằng ngôn ngữ tự nhiên sẽ dễ dàng và hiệu quả hơn. Trong khi đó người mua chỉ có thể trao đổi với trang web qua một số cách nhất định (thường được số hóa).
Các khó khăn về kỹ thuật:
Khơng gian tìm kiếm sản phẩm rất lớn, khơng thể tìm tuyến tính vì sẽ bắt khách hàng đợi lâu.
Cần tạo một kich bản để thu thập thông tin khách hàng sao cho hợp lý, tránh gây nhàm chán và làm mất nhiều thời gian.
Vấn đề “đa mục tiêu” (xem phụ lục A), các sở thích của người dùng đôi khi xung đột hoặc không hợp lý dẫn đên kết quả tìm kiếm thường là “Khơng tìm thấy mặt hàng nào phù hợp”. Đây là một trong những điều cấm kỵ nhất của người bán hàng, để người khách hàng ra về tay không, không những không bán được hàng mà cịn để lại ấn tượng khơng tốt nơi khách hàng.
4.3 Vấn đề “đa mục tiêu” khi chọn sản phẩm
Có thể thấy khó khăn lớn nhất của module hỗ trợ chọn sản phẩm đó là giải quyết, thỏa mãn cùng lúc nhiều tiêu chí của người mua về mặt hàng mà khách hàng đó quan tâm. Các mục tiêu,sở thích này có thể đối chọi nhau.Đây thực chất chính là đi giải quyết bài tốn tối ưu đa mục tiêu (xem phụ lục A), trong đó mỗi mục tiêu chính là các sở thích của người dùng mà mặt hàng đó phải thỏa. Module này có nhiệm vụ tìm ra sản phẩm phù hợp (hoặc gần giống) với các sở thích của người mua.
4.4 Cách tiếp cận để giải bài toán “Tối ưu đa mục tiêu” khi chọn sản phẩm phẩm
Nội dung của luận văn này là tìm hiểu bài tốn tối ưu hóa đa mục tiêu và cách tiếp cận dùng giải thuật di truyền (Genetic Algorithm - GA). Và áp dụng cách tiếp cận trên để giải bài tốn tối ưu hóa đa mục tiêu khi hỗ trợ khách hàng chọn
sản phẩm. Luận văn này chọn cách tiếp cận trên với các lý do sau:
Đây là một cách tiếp cận mới mẻ và đang được nhiều người quan tâm,phát triển và ứng dụng vào nhiều lĩnh vực khác nhau.
Giải thuật di truyền (GA) giựa trên ý tưởng quần thể tự nhiên, chọn lọc ngẫu nhiên sẽ làm cho giải thuật có khả năng mạnh mẽ trong việc tìm kiếm một cách song song. Trong đó tất cả các cá thể trong quẩn thể sẽ được cố gắng tìm kiếm ở tất cả các hướng trong khơng gian tìm kiếm qua đó cho phép GA tránh được tối ưu hóa cục bộ.
Một thế mạnh của GA trong nhiệm vụ tìm kiếm đó là khơng lo sợ khả năng bùng nổ của tổ hợp tìm kiếm.GA đặc biệt tỏ ra hữu hiệu với các khơng gian tìm kiếm lớn. Với các khơng gian tìm kiếm lớn GA khơng những bảo đảm được tối ưu hóa tồn cục mà cịn bảo đảm được thời gian tìm kiếm, một trong những yêu cầu quan trọng của bài toán.
Và do đặc trưng của bài toán, chúng ta cần trả về cho người mua một danh sách các mặt hàng mà theo hệ thống là phù hợp nhất (thông thường từ 3 đến 5 giải pháp) nên việc sử dụng GA lại càng hợp lý. GA khác các phương pháp tìm kiếm tuyến tính khác là trong một lần chạy có thể cho ta một tập các giải pháp thuộc miền Pareto (xem phụ lục A) trong quần thể của nó.
4.5 Chuyển bài tốn chọn sản phẩm thành bài tốn tối ưu đa mục tiêu
Chúng ta sẽ mơ tả bài tốn mua hàng thành các khái niệm trong bài toán tối ưu hóa đa mục tiêu.
4.5.1 Lời giải cho bài toán
Trong bài tốn tìm kiếm sản phẩm, người dùng mong muốn chọn ra một mặt hàng thích hợp do đó sản phẩm tối ưu đối với sở thích người mua chính là lời giải của bài toán. Nhưng chọn ra chỉ một sản phẩm cho người dùng có vẻ khơng phù hợp cho lắm, đôi khi tạo cho người dùng cảm giác bị ép buộc. Do đó giải pháp phù hợp đó là một tập các lời giải tối ưu, tập hợp này tương tự như
những sản phẩm mà một người bán hàng sẽ gợi ý cho chúng ta khi đã nắm bắt được nhu cầu của khách hàng.
4.5.2 Các biến quyết định
Ở đây các biến quyết định (xem phụ lục A) chính là các thuộc tính cấu thành nên sản phẩm.
Ví dụ (sản phẩm là điện thoại di động)
X (Giá, trọng lượng, kiểu dáng, thời gian sử dụng pin)
X là một điểm trong vùng khả thi (xem phụ lục A). Trong ví dụ trên có 4 biến
quyết định.
4.5.3 Các ràng buộc
Trong bài tốn “tối ưu đa mục tiêu “ các ràng buộc (xem phụ lục A) chính là các điều kiện giữa các biến quyết định. Nhưng trong bài tốn này khơng gian tìm kiếm là rời rạc, các điểm trong khơng gian tìm kiếm chính là ràng buộc của các biến quyết định. Hay nói cách khác nếu các giá trị của các biến quyết định cùng tồn tại trong một lời giải thì đó là một ràng buộc đúng đắn.
4.5.4 Các mục tiêu
Có thể dễ dàng nhận thấy 2 mục tiêu (objective) (xem phụ lục A) mà người mua luôn nhắm tới là giá cả (cost) và chất lượng của sản phẩm (performance). Người mua luôn muốn mua được sản phẩm đáp ứng đầy đủ các yêu cầu với một giá rẻ nhất .Và điều khó khăn ở đây đó là 2 mục tiêu này ln xung đột với nhau. Một sản phẩm với các tính năng nổi trội ln có một cái giá cao hơn một sản phẩm khác và ngược lại do đó thường đi ngược lại với mong muốn của người mua. Do đó nhiệm vụ của bài tốn đa mục tiêu đó là phải dung hịa cả 2 mục tiêu đó. Mơ tả tổng qt:
min/ max F ( f p (x), fc (x)) . Từ đây ta thống nhất là sẽ dùng min, tức là mục tiêu của ta là làm tối thiểu hóa vector mục tiêu.
Trong đó F là một vector mơ tả 2 mục tiêu chính là cost và performance
Trên đây chỉ là trường hợp đơn giản performance của ta chỉ có một thuộc tính. Đối với trường hợp tổng quát thì sao? Bây giờ hàm mục tiêu về chất lượng ( performance) sản phẩm sẽ trở thành:
f p (x) ( f p1 (x) f p 2 (x) ... f p( n1) (x)) bỏ qua thuộc tính
giá cả) với n là số thuộc tính của sản phẩm (n-1