Mức hỗ trợ Đặc điểm
Hướng truy cập
Tất cả các trang web tìm kiếm (khơng chỉ riêng cho các trang web mua bán trực tuyến)
Đặc điểm:
Tìm kiếm và duyệt tuyến tính.
Tìm kiếm theo từ khóa.
Hướng Các trang web ở mức này có những đặc điểm sau:
giao dịch Giao diện người dùng tập trung hỗ trợ các hành vi của người dùng trong các hoạt động giao dịch, mua hàng, đặc biệt là hướng dẫn lựa chọn sản phẩm.
Cấu trúc dữ liệu website mua hàng và ứng dụng web server.
Đòi hỏi nội dung, chất lượng của catalog sản phẩm và giao diện đồ họa phải cao.
Hướng quan hệ
Đây là những ứng dụng hướng đến mục tiêu chỉ dẫn khách hàng dựa trên tri thức, với các đặc điểm sau:
Thơng qua sở thích và tính cách cá nhân của người tiêu dùng.
Hỗ trợ các nhắc nhở,quảng cáo, mở rộng dây chyền cung ứng.
Sự sắp xếp này đi từ sự hỗ trợ đơn giản đến tinh vi. Những mức độ này cũng phản ánh sự tiến triển của các hệ hỗ trợ từ những năm 90 đến nay.
Ở mức 1, DSS dùng nhiều đến các phần mềm đa dụng để tạo những trang mua bán và tìm kiếm, duyệt đơn giản dựa trên các từ khóa. Những trang web này chủ yếu để lơi kéo khách hàng và khơng tốn nhiều chi phí để xây dựng. Chúng là dạng thực thi trên web và chúng đem lại rất ít các trợ giúp cho người mua với các chức năng truy cập thông tin và chức năng mua hàng đơn giản.
Mức tiếp theo là một chuỗi cố gắng nhằm hiểu rõ các bước và thao tác xử lý của người mua trong suốt quá trình diễn ra giao dịch và tạo ra nhiều thiết lập mặc định và khuôn mẫu để hỗ trợ tốt hơn cho các bước cấu trúc. Những khảo sát về DSS những năm cuối thập niên 90 của thế kỷ 20 tập trung vào việc làm thế nào hỗ trợ các bước so sánh nhãn hiệu và sản phẩm. Một thời gian sau, một khảo sát khác cho thấy các hệ thống đang cố gắng mở rộng điểm này cho các bước mua, thanh toán và giao hàng. Họ cũng kết hợp được những hướng tiếp cận và mở rộng DSS trên các xử lý quyết định như tài chính, giúp đỡ khách hàng trực tuyến và quản lý lỗi cũng như tìm kiếm theo ngơn ngữ tự nhiên.
Ở mức cao nhất là những đặc tính của các trang mua bán hàng hóa hiện tại được phát triển trong thập kỷ đầu của thế kỷ 21 này. Ở đây chúng ta thấy sự thay đổi sang sự hỗ trợ đối với các quan hệ dựa trên thời gian dài mà người mua có được dựa trên các giao dịch.
3.4.1 Khảo sát một số hệ hỗ trợ ra quyết định trong E-Commerce 3.4.1.a Amazon.com
Amazon.com được thành lập vào năm 1996, là trang web bán sách nổi tiếng hiện nay. Danh mục sản phẩm của Amazon.com rất phong phú bao gồm: sách, đồ điện tử, đĩa nhạc, phim ảnh. Sự hỗ trợ khách hàng chọn sản phẩm là riêng rẽ từng loại sản phẩm khác nhau. Điều này cũng dễ hiểu bởi không thể đề nghị khách hàng mua một quyển sách trong khi
họ đang tìm mua một máy điện thoại. Chúng ta sẽ tập trung vào hệ thống hỗ trợ trong mua bán sách của Amazon.com.
Danh mục sách đề nghị mua (persionalized recommendation): Như nhiều
website E- commerce khác, Amazon.com được cấu trúc với các trang thông tin cho mỗi quyển sách, đem lại các thông tin chi tiết về nội dung và mua bán. Danh sách các quyển sách đề nghị mua kèm được thấy ở trang thông tin của mỗi cuốn sách. Thật sự, nó gồm hai danh sách đề nghị riêng biệt. Phần thứ nhất gồm danh sách những quyển sách thường mua nhất. Phần thứ hai là danh sách các tác giả của những quyển sách thường xuyên được mua. Mọi hoạt động duyệt danh mục sách, thêm hàng vào giỏ của người dùng đều được website ghi nhận để làm cơ sở cho việc đưa ra các đề nghị này.
Ý kiến của bạn (Your Recommendation): Amazon cũng khuyến khích khách
hàng phản hồi trực tiếp các cuốn sách mà họ đã đọc. Khách hàng đánh giá các cuốn sách họ đã đọc trên thang điểm 5 từ “hated it” đến “loved it”. Những đánh giá này sẽ được dùng như là đầu vào cho một cơ chế đề nghị (recommendation engine). Do đó, khi đánh giá càng nhiều quyển sách, khách hàng sẽ nhận được lời đề nghị càng chính xác. Hình dưới cho phép ta xem việc đánh giá của khách hàng là lý do để Amazon đưa ra các đề nghị đối với các quyển sách khác. Ví dụ khi ta đánh giá quyển “A Road Ahead” của Bill Gates thì Amazon đề nghị ta một quyển sách khác cũng của Bill Gates là “Bussiness @ the Speed of Thought”.
Hình 3.1 - Amazon đưa ra lý do vì sao các lời đề nghị được đưa ra.
Email Notification: Đặc tính này cho phép customers được biết qua email các
sản phẩm mới đã thêm vào catalog của Amazon.com.
Nhận xét của khách hàng (Customer Comments): Nhận xét của khách hàng
cho phép khách hàng nhận được các đề xuất dạng văn bản dựa trên ý kiến của các khách hàng khác.
Mỗi một trang thông tin cụ thể về một cuốn sách là đánh giá dựa trên thang điểm 5 biểu hiện bằng hình ngơi sao và các lời nhận xét của những người đã đọc quyển sách và đưa ra lời bình. Khách hàng cũng có sự chọn lựa các kết hợp giữa các đề xuất này trong quyết định mua của họ. Hơn nữa, khách hàng có thể đánh giá các nhận xét này. Với mỗi lời bình có một câu hỏi “Did this comment help you? ” và khách hàng có thể chọn là “có” hoặc “khơng” (yes hoặc no). Kết quả sẽ được liệt kê vào bảng và đưa ra 5 trong 7 người tìm được các lời nhận xét có ích.
3.2.2 MovieFinder.com
MovieFinder.com là trang web phim ảnh được quản lý bởi E!Online. MovieFinder hỗ trợ người dùng qua các sắp xếp các phim theo đánh giá của chính họ và đánh giá của khách hàng theo các mức từ A đến F. Các đánh giá của người dùng về các phim họ đã xem thể hiện ở mục Users Grade. Còn mục Our Grade là đánh giá của những người biên tập trang web. Hình 3.2. dưới cho ta thấy bộ phim “Kingdom of Heaven” được đánh giá B+ ở cả hai mục Our Grade và Users Grade. Đối với người dùng đã đăng ký có thể được đánh giá trực tiếp tại đây
Hình 3.2 - Đánh giá phim ở movifinder.com
3.3.1.a Carsdirect.com
Carsdirect là một cửa hàng bán xe hơi trên Web, được thành lập vào năm. Carsdirect đưa ra một danh mục sản phẩm theo hướng tiếp cận với nhu cầu của người dùng. Trang Research (xem hình 3.3) cho phép chọn xe theo mục đích sử dụng của người mua: xe chở khách, xe cao cấp, xe tải nhẹ, xe cũ.
Hình 3.3 - Trang Research.Hình 3.4 - Danh mục xe ở loại xe chở khách.
3.3.1.b ActiveDecisions.com
Trong môi trường mua bán qua mạng, người dùng thường không thể đánh giá tất cả các tiêu chuẩn so sánh ở mức sâu. Việc này đòi hỏi nhiều thời gian và thao tác
phức tạp. Do đó các trang web đưa ra kịch bản xử lý theo 2 bước để đạt được sự hỗ trợ khách hàng ở mức sâu. Bước đầu tiên, khách hàng thường được đưa ra một bộ gồm nhiều các sản phẩm và chỉ ra một bộ con các lựa chọn tốt. Sau đó, các lựa chọn này sẽ được đánh giá ở độ sâu hơn, thực hiện các so sánh các sản phẩm trên các thuộc tính quan trọng và ra quyết định mua. Một chương trình đóng vai trị là người đề nghị (Recommender Agent-RA) sẽ trợ giúp cho khách hàng trong bước đầu tiên, đưa ra các sản phẩm lựa chọn. Dựa vào các thơng tin cung cấp đã khảo sát trước hoặc chính từ người mua hàng đối với sở thích của họ mà RA sẽ đề xuất một bộ sản phẩm hấp dẫn nhất đối với cá nhân đó. Các hướng tiếp cận sở thích người dùng có thể chia ra thành hai nhóm: hướng đặc tính và hướng nhu cầu. Một hệ thống theo hướng đặc tính thường yêu cầu khách hàng chỉ ra các sở thích về đặc tính của sản phẩm như: mơt máy chụp ảnh kỹ thuật số phải có độ phân giải ít nhất là 4 Mega Pixel. Các tiếp cận nhu cầu sẽ hỏi người dùng chỉ ra “Nhu cầu cá nhân của họ là gì?”. Ví dụ tơi cần chụp ảnh ngoại cảnh. Cách tiếp cập theo hướng nhu cầu nên là một phương pháp phù hợp để hỗ trợ cho người dùng chưa có kinh nghiệm chọn sản phẩm.
Active Decisions Inc. là nhà cung cấp hàng đầu thế giới các giải pháp hướng dẫn mua hàng. Ứng dụng cung cấp bởi Active Decisions đem lại cho bộ phận mua hàng, các chi nhánh và các ứng dụng tự phục vụ mục tiêu là lôi kéo càng nhiều khách hàng.
Kỹ thuật chính của Acitve Decisions được xem như là sự kết hợp của Recommender Agent (RA) và ma trận so sánh (Comparison Matrix-CM). Ma trận so sánh, sự trợ giúp tạo quyết định dạng thứ hai, là công cụ tương tác được đưa ra nhằm giúp người dùng trong các so sánh ở mức sâu hơn giữa các sản phẩm đã chọn ở bước một. Một dạng cơ bản của hướng trợ giúp ra quyết định này, thích hợp như một giỏ hàng hiển thị một ma trận các hàng là các sản phẩm và các cột là các thuộc tính quan trọng của sản phẩm. Thiết kế này cho phép người mua so sánh các giá trị của sản phẩm hiệu quả và chính xác hơn.
Hình 3.5 - Các câu hỏi về đặc tính máy in.
Các bước tiếp cận của kỹ thuật này thì đầu tiên khách hàng sẽ được hỏi họ tìm cái gì và cái gì là quan trọng với họ thông qua các hướng tiếp cận theo nhu cầu hay theo đặc tính, dựa vào đó đưa ra các đề xuất thích hợp cho khách hàng. Khách hàng sẽ chọn một vài sản phẩm đưa ra để so sánh ở mức cao hơn trong ma trận so sánh. Những sản phẩm được đề nghị cũng hiển thị với lời giải thích tại sao nó tốt cho người dùng. Một vài giải pháp của Active Decision sẽ được thấy ở các website www.absound.ca, www.qvc.com , www.sonystyle.com, www.jr.com và www.hpshopping.com. Chúng ta sẽ khảo sát một ví dụ của Active Decision ở website Hpshopping.com.
3.3.1.c Hpshopping.com
Hpshopping là một trang web giới thiệu các sản phẩm của hãng HP bao gồm máy tính, máy PDA, máy in. Trong phần này, chúng ta tập trung vào trang chọn mua máy in (printer). Các câu hỏi chuyên về tính năng sử dụng của máy in như số trang in, cỡ trang in thường dùng, cổng kết nối với máy tính, hệ điều hành của máy tính v.v… Kết quả là ba sản phẩm thích hợp nhất được hiển thị ở ma trận so
sánh với cột là các sản phẩm và dịng là các thuộc tính của sản phẩm máy in. Trong một số trường hợp HPShopping còn đưa ra một kết quả sản phẩm máy in. Trong một số trường hợp HPShopping còn đưa ra một kết quả mạnh hơn yêu cầu của người người dùng mà cịn có thêm một số tính năng khác. dùng. Kết quả này là một máy in khơng chỉ có đủ các đặc tính theo u cầu
Hình 3.6 - Các sản phẩm đề nghị của HP sau khi chọn trả lời cho các câu hỏi
3.4.1.f Samsungtelecom.com
Đây là trang hỗ trợ khách hàng tìm kiếm sản phẩm theo nhu cầu của khách hàng qua các câu hỏi cho người dùng lựa chọn. Nếu như ở website hpshopping.com các câu hỏi tập trung vào “Sản phẩm cần tìm có đặc điểm gì?“ thì ở đây các câu hỏi tập trung vào “Người dùng cần mua sản phẩm để làm gì?”. Dựa vào các lựa
chọn của khách hàng website đưa ra các điện thoại phù hợp với người dùng. Cuối cùng, sau quá trình đề xuất các sản phẩm thích hợp, trang web sẽ hỏi ý kiến người dùng có thỏa mãn với những sản phẩm được đề xuất hay chưa.
Hình 3.7 - Các câu hỏi của samsungtelecom.com.
3.4.1.g Shopping.Yahoo.com/Smartsort
Shopping.yahoo.com là một trong những hệ thống mua sắm lớn nhất hiện nay. Ngồi các tính năng hỗ trợ tìm kiếm thơng thường như duyệt theo catalog, cho khách hàng đánh giá trên sản phẩm đã mua, người dùng cịn có thể tìm các sản phẩm theo sở thích, mục đích sử dụng qua tính năng Smartsort có trên trang web Yahoo!Shopping gồm nhiều loại mặt hàng trong đó phần Smartsort hỗ trợ các
mặt hàng đồ điện tử như điện thoại di động, digital camera, PDA, máy tính v.v… Phần khảo sát này ta tập trung vào mặt hàng điện thoại di động. Tính năng Smartsort của Yahoo!Shoppping hỗ trợ người dùng chọn mức độ quan trọng của các thuộc tính sản phẩm qua thanh kéo (slider bar). Người dùng đánh giá độ quan trọng của các đặc tính trên máy điện thoại di động như thời gian dùng pin, kích cỡ, nhà sản xuất, các tính năng giải trí khác v.v… Yahoo đưa ra 5 mức đánh giá độ quan trọng đối với tính năng của điện thoại di động như sau: khơng quan trọng (not important), ít quan trọng (sightly important), quan trọng (important), rất quan trọng (very important), hết sức quan trọng(most important). Kết quả đưa ra là 10 máy điện thoại di động được sắp xếp theo độ quan trọng của các tính năng đã đánh giá trước đây. Trong danh sách các máy điện thoại đưa ra người dùng có thể tiếp tục chọn vào danh sách so sánh tiếp theo. Một ma trận so sánh sẽ đưa ra giúp khách hàng dễ dàng so sánh.
3.4.2 Bảng tóm tắt và so sánh
STT Website Đặc điểm Mức hỗ
trợ đạt được
1 Amazon.com Các đặc tính hỗ trợ rất phong phú, hỗ trợ người dùng ở nhiều giai đoạn như tìm kiếm,
hướng dẫn mua.
3
2 Moviefinder.com Chỉ có 2 đặc điểm đơn giản là danh sách “Top 10” và đánh giá điểm cho mỗi phim.
2
3 Carsdirect.com Catalogue danh mục các xe chứa theo nhu cầu người mua.
2 4 Samsungtelecom.co
m
Danh sách các câu hỏi được đưa ra nhằm đánh giá nhu cầu người dung. Danh sách kết quả là ma trận so sánh khá hợp đã được sắp
xếp.
-
5 HpShopping.com Danh sách câu hỏi đưa ra cho khách hàng và ma trận so sánh của danh sách sản phẩm được đề nghị có nội dung và cách trình bày tốt.
3
6 Shopping.yahoo.co m/ Smartsort
Danh sách đánh giá độ quan trọng các tiêu chuẩn của sản phẩm đưa ra kết quả ngay lập tức.
3
3.5 Các tiện ích mà một trang web bán hàng cần cung cấp để có thể Hỗ trợ khách hàng tốt hơn
Qua các phần thống kê bên trên chúng ta thấy rằng “hỗ trợ khách hàng” vẫn là một sự thiếu hụt nghiêm trọng của các trang web bán hàng hiện nay.
Theo một cuộc khảo sát các người thường xuyên mua hàng qua mạng thì các tiện ích hỗ trợ khách hàng đóng vai trị then chốt trong việc gia tăng số lượng mua hàng qua mạng.
Các tiện ích mà các cửa hàng trên mạng cần cung cấp (tốt hơn)
Giá cả và hỗ trợ so sánh giá cả.
Tính bảo mật của các giao dịch.
Các dịch vụ hỗ trợ khách hàng trong việc mua và hồn trả hàng hóa.
Chương 4
Sử dụng giải thuật di truyền để giải quyết bài toán hỗ trợ chọn sản phẩm khi mua hàng qua mạng
4.1 Giới thiệu
Để xây dựng được một trang web bán hàng thật sự hồn hảo đó là sự kết hợp của rất nhiều yếu tố bao gồm sự quảng bá đến người dùng, giao diện người dùng, các tiện ích hỗ trợ khách hàng khi mua hàng, các dịch vụ giao hàng và hoàn trả hàng. Trong khuôn khổ luận văn, chúng em cố gắng đưa ra một cách tiếp cận để xây dựng một trong những yếu tố trên “hỗ trợ khách hàng chọn sản phẩm khi mua hàng qua mạng”.
Chọn sản phẩm là một trong những phần quan trọng nhất khi mua hàng. Như chương trước đã phân tích một trong những nguyên nhân chính dẫn đến sự không thành công của phương thức mua hàng qua mạng đó là người mua khơng thể chọn ra được một sản phẩm ưng ý nhất trước vô vàn các mặt hàng được bày ra. Vậy trang web chúng ta xây dựng phải có nhiệm vụ như một người bán hàng