2. NỘI DUNG SÁNG KIẾN KINH NGHIỆM
2.4. Một số bài tập trắc nghiệm vận dụng
Câu 1. Cho hàm số có bảng biến thiên như sau
Số nghiệm của phương trình trong đoạn là
A. 1. B. 2. C. 3. D. .
(Trích câu 47 chuyên Quảng Ninh-2020).
Câu 2. Cho hàm số là hàm đa thức bậc 3 và có bảng biến thiên như sau
Số nghiệm của phương trình trong đoạn là
A. 1. B. 4. C. 3. D. .
(Trích câu 45 chuyên KHTN -2020).
Câu 3. Cho hàm số có bảng biến thiên sau:
Hỏi có bao nhiêu giá trị ngun để phương trình có nghiệm thuộc khoảng là:
A. . B. . C. Vô số. D. .
Câu 4. Cho hàm số liên tục trên có đồ thị như hình vẽ dưới đây.
Số nghiệm thực của phương trình là
A. 1. B. 2. C. 3. D. 4.
(Trích câu 43 chuyên ĐHV -2020).
Tìm số giá trị nguyên của tham số m để phương trình có hai nghiệm phân biệt.
A. . B. . C. . D. .
Câu 6. Cho hàm số liên tục trên và có bảng biến thiên như hình vẽ
Tập hợp các giá trị để phương trình có nghiệm thuộc khoảng là: A. B. C. D.
Câu 7. Cho hàm số có bảng biến thiên như sau:
Số nghiệm của phương trình là
A.1. B.2. C. . D. .
3 2 1 1 2 2 2 x y -1 -1 1 1 Số điểm cực trị của hàm số là: A. . B. . C. . D. .
Câu 9. Cho hàm số có đồ thị như hình bên
Số nghiệm thuộc đoạn của phương trình :
A. . B. . C. . D. .
(Trích câu 45 trường chuyên Phan Bội Châu-Nghệ An -2020)
Câu 10. Cho hàm số có bảng biến thiên như hình vẽ dưới đây. Số nghiệm thuộc đoạn của phương trình là
0 0 0
A. 7. B. 6. C. 8. D. 5.