Kết luận chươn g2

Một phần của tài liệu Đồ án tốt nghiệp ngành thông tin nghiên cứu công nghệ truy cập vô tuyến mới trong 5g (Trang 64)

Bảng 3.7 : Các băng tần số hoạt động của Phiên bản 16 NR trong FR2

2.8 Kết luận chươn g2

Trong chương này, chúng ta tìm hiểu tổng quan mạng tế bào 5G ở các khía cạnh khác nhau. Một sự nhấn mạnh đặc biệt đã được đặt vào các kỹ thuật đa truy cập trực giao và không trực giao và kiến trúc mạng trong các thế hệ công nghệ tế bào khác nhau. Yêu cầu IMT-2020 cho 5G bao gồm tăng băng thông rộng di động, kỹ thuật thông tin từ máy cỡ lớn đến máy và độ tin cậy cao và kỹ thuật thông tin với độ trễ thấp đã được thảo luận và các sửa đổi có thể có, chẳng hạn như OFDM linh hoạt, cần thiết để giải quyết các yêu cầu này đã được xem xét. Một vài thành phần kỹ thuật chính cho mạng khơng dây 5G, bao gồm massive MIMO, RAN và SDN, đã được giải quyết. Các ưu điểm và vấn đề của CP- OFDM đã được liệt kê và hướng khả thi cho thiết kế dạng sóng mới đã được vạch ra.

Chương 3

MẠNG TRUY CẬP VÔ TUYẾN MỚI NR 3.1 GIỚI THIỆU

Chương này giới thiệu mạng truy cập vô tuyến mới NR (RAN), đảm nhiệm phát qua khơng khí và thu thơng tin mặt phẳng người dùng (tức là dữ liệu) và mặt phẳng điều khiển (tức là quản lý thiết bị và các thơng số bảo mật). Các thực thể RAN chính là những thiết bị người dùng (UEs) và các nút truy cập vô tuyến thế hệ tiếp theo (NG-RAN) hoặc các trạm gốc. Nút NG-RAN là một NodeB mở rộng (gNB), để kết cuối giao thức mặt phẳng người dùng NR và mặt phẳng điều khiển đối với UE hoặc ng-eNB, kết cuối giao thức mặt phẳng điều khiển và mặt phẳng người dùng truy cập vơ tuyến mặt đất phổ biến (E-UTRA) về phía UE. Phần còn lại của chương này tập trung vào gNB NR, các chức năng khác của gNB bao gồm quản lý tài nguyên vô tuyến (RRM), lập lịch và truyền dẫn tìm gọi và thơng tin hệ thống, phát hành và thiết lập kết nối, tương tác với E-UTRA, điều khiển di động, v.v.

Cả mặt phẳng người dùng NR và mặt phẳng điều khiển NR đều có một ngăn xếp giao thức mơ-đun, tương tự như LTE. Ngăn xếp giao thức lớp 2 cho mặt phẳng người dùng NR được thể hiện trong Hình 3.1 (a) và bao gồm các (phân) lớp và chức năng sau:

Giao thức tương thích dữ liệu dịch vụ (SDAP): Thực hiện ánh xạ giữa một

luồng chất lượng dịch vụ (QoS) và thiết bị mang dữ liệu vô tuyến.

Giao thức hội tụ dữ liệu gói (PDCP): Đánh số thứ tự, nén/giải nén tiêu đề, mã

hóa và bảo vệ tính tồn vẹn.

Điều khiển kết nối vơ tuyến (RLC): Đánh số thứ tự, phân đoạn và ghép đoạn.

Điều khiển truy cập môi trường (MAC): Ánh xạ các kênh logic để truyền các

kênh và thực hiện sửa lỗi thông qua yêu cầu phát lại tự động lai (HARQ).

Lớp vật lý: Truyền dẫn và tiếp nhận qua không khí. Ngăn xếp giao thức mặt

 Giao thức kiểm sốt tầng khơng truy cập (NAS): Xác thực, quản lý di động và kiểm soát bảo mật.

 Điều khiển tài nguyên vô tuyến (RRC) lớp 3: Thiết lập kết nối RRC, chức năng di động và khôi phục lỗi liên kết vơ tuyến

 Các lớp PDCP, RLC, MAC và PHY.

Hình 3.1. (a): Ngăn xếp giao thức mặt phẳng người dùng NR, và (b): Ngăn xếp giao thức mặt phẳng điều khiển.

Hình 3.2. Ví dụ về luồng dữ liệu.

Ở phía phát, mỗi lớp nhận một đơn vị dữ liệu dịch vụ (SDU) từ một phân lớp cao hơn được xử lý, nối với các tiêu đề và được chuyển dưới dạng một đơn vị dữ liệu giao thức (PDU) cho phân lớp bên dưới và ngược lại khi nhận, được thể hiện trong Hình 3.2. Lớp SDAP là mới so với LTE, nó nhận

các gói IP để tạo PDU dựa trên các yêu cầu về chất lượng dịch vụ (QoS). PDU MAC khi được chuyển đến lớp vật lý cũng được gọi là một khối vận chuyển (TB). Phần còn lại của chương này mơ tả các chức năng chính của Phiên bản 15 và các đặc tính thiết kế của từng lớp giao thức trên. Lớp vật lý NR tại giao

diện vô tuyến cho cả hai hướng đường xuống và đường lên được đề cập trong mục 3.2, sau đó là tổng quan ngắn gọn về các khía cạnh tần số vơ tuyến trong mục 3.3.

Tiếp theo là lớp MAC trong mục 3.4, lớp RLC trong mục 3.5, lớp PDCP và SDAP trong mục 3.6, lớp RRC trong mục 3.7. Mục 3.8 là kết luận của chương.

3.2 LỚP VẬT LÝ

Trước khi đi sâu vào chi tiết của các kênh và tín hiệu của lớp vật lý khác nhau thì chúng ta nên xem xét một quy trình bậc cao để xem các phần khác nhau kết hợp với nhau như thế nào. Một ví dụ phù hợp là quy trình truy cập ngẫu nhiên để truy cập ban đầu. Một UE thực hiện quy trình này khi nó cố gắng kết nối với một tế bào NR độc lập trong lần đầu tiên sau khi được bật nguồn và có thể được tóm tắt là:

 UE điều chỉnh kênh tần số vô tuyến (RF) cụ thể và tìm kiếm một tế bào để kết nối. Dải tần số của kênh RF (tức là dưới hoặc trên 24 GHz) xác định phạm vi của RF và các tham số lớp vật lý được UE giả định cho tìm kiếm tế bào của nó.

 UE tìm kiếm khối dãy đồng bộ (SSB) xác định tế bào của gNB nằm trên lưới đồng bộ. Việc này thường liên quan đến việc vận hành một bộ tương quan cho

các mẫu tín hiệu đồng bộ chính (PSS) tương tự như LTE.

 Sau khi phát hiện PSS theo sau là tín hiệu đồng bộ hóa thứ cấp (SSS), UE giả định rằng nó đã định vị SSB và thực hiện giải mã kênh quảng bá vật lý (PBCH)

đường xuống liên kết với sự trợ giúp của tín hiệu tham chiếu giải điều chế (DMRS) PBCH.

 Việc đọc khối thơng tin chính (MIB) trong tải PBCH dẫn UE đến thơng tin hệ thống tối thiểu còn lại (RMSI) được lập lịch bởi một khơng gian tìm kiếm kênh điều khiển đường xuống vật lý (PDCCH) loại 0 và được vận chuyển trên kênh chia sẻ đường xuống vật lý (PDSCH). RMSI chứa thông tin hệ thống cần thiết để thực hiện việc truyền dẫn truy cập ngẫu nhiên trên đường lên.

 UE có thể đo các SSB bổ sung (nếu được truyền) để xác định SSB nào (tương đương, chùm tia đường xuống) có chất lượng tốt nhất (ví dụ: cơng suất nhận cao

nhất). Sau đó UE suy ra tài nguyên truy cập ngẫu nhiên nào để sử dụng do sự tương thích giữa chất lượng SSB và tài nguyên truy cập ngẫu nhiên, do nhiều hướng chùm tia có thể được sử dụng trong phổ tần sóng milimet.

 UE truyền một đoạn mở đầu truy cập ngẫu nhiên trên kênh truy cập ngẫu nhiên vật lý (PRACH) để thông báo gNB về sự hiện diện của nó. Nếu PRACH

được phát hiện, gNB lập lịch phản hồi thông qua PDCCH và cung cấp cho UE với sự cho phép lập lịch đường lên đầu tiên của nó.

 UE phát một yêu cầu kết nối trên kênh chia sẻ đường lên vật lý (PUSCH) theo sự cho phép đường lên. gNB giải mã PUSCH với sự hỗ trợ của DMRS UL liên quan.

 Khi yêu cầu kết nối được chấp nhận và quy trình truy cập ngẫu nhiên hồn tất, UE bắt đầu giám sát PDCCH cho DL và UL lập lịch và thực hiện các phép đo được cấu hình dựa trên tín hiệu tham chiếu DL (như tín hiệu tham chiếu thơng tin trạng thái kênh (CSI-RS)) cho tế bào dịch vụ của nó và tế bào lân cận. Kết quả về các phép đo này hỗ trợ gNB với việc điều chỉnh liên kết và quản lý di

động.

Mỗi kênh và tín hiệu trên được mơ tả chi tiết trong phần cịn lại của phần này.

3.2.1 Cấu trúc khung và tài nguyên

Ghép kênh phân chia tần số trực giao theo tiền tố vòng (CP-OFDM) được chọn làm dạng sóng NR sau một nghiên cứu tồn diện trong Phiên bản 14. Một lý do là ở tần số dưới 7 GHz, CP-OFDM được chứng minh tốt vì nó cũng được sử dụng trong LTE. CP-OFDM với tỷ lệ thích hợp của khoảng cách sóng mang con (SCS) cũng có thể áp dụng cho các tần số sóng mang milimet và dạng sóng khơng thay đổi trên các dải tần khác nhau tạo điều kiện thuận lợi cho việc thực hiện. Sơ đồ khối máy phát được thể hiện trong Hình 3.3. Vơ hiệu hóa hoạt động tiền mã hóa biến đổi dẫn đến dạng sóng UL ghép kênh phân chia theo tần số trực giao (OFDM) trong mặt phẳng điều khiển, trong khi cho phép nó tạo ra dạng sóng OFDM biến đổi Fourier rời rạc (DFT) (tức là dạng sóng UL LTE) bảo vệ UL tốt hơn.

NR có cấu trúc khung linh hoạt khơng bị giới hạn trong cấu trúc ghép kênh phân chia theo tần số hoặc phân chia theo thời gian cụ thể như trong LTE. Truyền dẫn đường xuống và đường lên được tổ chức thành các khung có độ dài 10ms, mỗi khung bao gồm mười khung con có độ dài 1 ms. Độ dài của khe với một SCS 15 kHz là 14 symbols với CP thơng thường và 12 symbols có CP mở rộng và được chia theo thời gian như là một hàm của khoảng cách sóng mang con được sử dụng để ln có số lượng khe trong số khung con là số nguyên. Các bộ số liệu này được hỗ trợ trong Phiên bản 15 và Phiên bản 16 được thể hiện trong bảng 3.1.

Ví dụ: với khoảng cách sóng mang con là 30 kHz, thì có hai khe trên mỗi khung con, trong khi với khoảng cách 240 kHz có 16 khe trên mỗi khung con. Mỗi khung được chia thành hai nửa khung có kích thước bằng nhau của 5 khung con, với nửa khung 0 bao gồm các khung con 0 - 4 và nửa khung 1 bao gồm các khung con 5-9. Có một bộ khung trong đường lên và một bộ khung trong đường xuống trên một sóng mang.

Bảng 3.1: Các số bộ số liệu NR Phiên bản 15.

µ SCS Tiền tố tuần hồn Hỗ trợ dữ liệu Hỗ trợ đồng bộ 0 15 Bình thường có Có 1 30 Bình thường Có Có 2 60 Bình thường, mở rộng Có Khơng 3 120 Bình thường Có Có 4 240 Bình thường Khơng Có

Các symbol OFDM trong một khe có thể được phân loại linh hoạt thành đường xuống hoặc đường lên. Báo hiệu của các định dạng khe được thực hiện bằng cách sử dụng chỉ báo định dạng khe (SFI) trong các kênh điều khiển đường xuống. Trong một khe của một khung đường xuống, UE giả sử rằng việc truyền dẫn đường xuống chỉ xảy ra trong các symbol đường xuống hoặc symbols linh

và song công phân chia theo thời gian (TDD) đều có khả năng hỗ trợ truyền trong phổ ghép và khơng ghép đơi.

Hình 3.3. Sơ đồ khối máy phát cho CP-OFDM với sự trải phổ DFT tùy ý trong UL.

NR cũng hỗ trợ nhiều bộ số liệu OFDM trong các điều kiện của SCS có chỉ số là µ, được thể hiện trong bảng 3.1. Sự linh hoạt để chọn một bộ số liệu phù hợp cho các trường hợp triển khai cụ thể là một trong những yếu tố phân biệt chính giữa NR và bộ số liệu 15 kHz của LTE. Ví dụ, khoảng cách sóng mang con là 120 kHz ( = 3) và 240 kHz ( = 4) là lý tưởng cho việc triển khai sóng milimet NR với hàng trăm megahertz băng thơng sóng mang và các tế bào phạm vi nhỏ, vì một băng thơng sóng mang lớn có thể đạt được với một kích thước FFT thực tế và độ dài CP ngắn sẽ khơng làm giảm hiệu suất. Có thể sử dụng khoảng cách sóng mang con là 15 kHz ( = 0) khi triển khai NR trong phổ tần LTE được tái sử dụng để phủ sóng tế bào lớn.

Tài nguyên miền tần số được xác định theo các khối tài nguyên, trong đó một khối tài nguyên trải trên 12 sóng mang con bất kể SCS. Trong sự thay đổi từ LTE, NR đưa ra khái niệm về một phần băng thông (BWP). Một phần băng thông là một tập hợp con của các khối tài nguyên chung liền kề cho một SCS định trước trên một sóng mang định trước. UE có thể được cấu hình tối đa bốn BWP trong đường xuống với một phần băng thông đường xuống duy nhất đang hoạt động tại một thời điểm nhất định. UE sẽ không nhận được dữ liệu, các kênh điều khiển hoặc các tín hiệu tham chiếu (ngoại trừ các phép đo di động) bên ngồi một phần băng thơng đang hoạt động. Do đó, các loại UE khác nhau có thể được cấu hình để giám sát và vận hành trên các BWP khác nhau của băng thơng sóng mang mà khơng phải thay đổi cấu hình tế bào cho tất cả các UE. Ví dụ, các UE loại máy có thể được tạo ra với một BWP nhỏ để đạt được hiệu quả

năng lượng, trong khi các UE eMBB có thể được tạo ra với một BWP lớn cho thơng lượng cao.

Một UE có thể được cấu hình tối đa 4 BWPs trong đường lên chỉ với một phần băng thông đường lên đang hoạt động ở thời điểm nhất định. Nếu một UE được cấu hình với một đường lên bổ sung (SUL), UE cũng có thể được cấu hình tối đa 4 BWPs trên đường lên bổ sung với một BWP SUL đang hoạt động ở thời điểm nhất định. UE khơng truyền dữ liệu hoặc các kênh điều khiển ngồi một phần băng thơng đang hoạt động.

3.2.2 Kênh và tín hiệu đường lên

Các kênh và tín hiệu đường lên (UL) được các UE truyền đến một hoặc nhiều tế bào dịch vụ. Các kênh vật lý UL sau đây đã được định nghĩa trong Phiên bản 15 và Phiên bản 16 để mang thơng tin có nguồn gốc từ các lớp cao hơn:

 Kênh truy cập ngẫu nhiên vật lý (PRACH);

 Kênh chia sẻ đường lên vật lý (PUSCH);

 Kênh điều khiển đường lên vật lý (PUCCH).

Các chức năng của phần trên giống như trong LTE. Nghĩa là, PRACH được sử dụng để bắt đầu quy trình truy cập ban đầu hoặc để khôi phục đồng bộ thời gian với gNB và cũng để bắt đầu quy trình khơi phục lỗi chùm tia. PUSCH mang dữ liệu UL (các khối vận chuyển) và/hoặc thông tin điều khiển đường lên (UCI), trong khi PUCCH truyền tải UCI. Nhiều kênh và tín hiệu UL có thể được truyền đồng thời trong trường hợp kết nối kép, chịu các hạn chế về cơng suất UE.

Các tín hiệu tham chiếu UL (RSs) sau đây khả dụng:

 Các tín hiệu tham chiếu giải điều chế (DM-RS);

 Các tín hiệu tham chiếu theo dõi pha (PT-RS);

 Tín hiệu tham chiếu âm thanh (SRS).

Vai trò của RSs là tạo điều kiện thuận lợi cho việc ước lượng kênh UL cùng với việc phát hiện và giải mã các kênh vật lý UL bằng gNB. DM-RS được bao gồm với truyền dẫn PUCCH và PUSCH để hỗ trợ giải điều chế của chúng, trong khi SRS được sử dụng để phát âm thanh kênh (tức là, gNB có thể suy ra

trạng thái kênh DL sau khi sử dụng SRS để ước lượng kênh UL). Trong khi DM-RS và SRS có các bản sao trong LTE, một bổ sung mới trong NR là PT-RS. Các hệ thống OFDM nói chung phải xử lý các độ lệch giữa các bộ dao động tần số gNB và UE do các thành phần phần cứng không lý tưởng. Việc bù tần số và dẫn đến mất tính trực giao của sóng mang dẫn đến một hiệu ứng được gọi là hiệu ứng tạp âm pha trên các sóng mang con OFDM.

Các hệ thống NR hoạt động ở các tần số sóng milimet đặc biệt dễ bị ảnh hưởng bởi cường độ (mật độ phổ công suất) của thang đo tạp âm pha với tần số dao động. Do đó, PT-RS được giới thiệu để theo dõi và bù tạp âm pha tại máy thu (trong trường hợp này là gNB). Một UE có thể được cấu hình chỉ để truyền PT-RS trong các khối tài nguyên được sử dụng cho PUSCH.

3.2.2.1 Kênh dữ liệu và điều khiển

Việc truyền dẫn PUSCH có thể được lập lịch động thông qua thông tin điều khiển đường xuống (DCI) được gửi trên PDCCH hoặc được xác định trước thông qua một sự cho phép đã được cấu hình (CG). Khi một UE nhận được một sự cho phép đường lên động ở định dạng DCI 0_0 (từ mã UL đơn) hoặc định dạng DCI 0_1 (hai từ mã UL) và nó nhận được cả việc gán tài nguyên miền tần số và gán miền thời gian của truyền dẫn PUSCH tương ứng. Không giống như LTE, các tài nguyên PUSCH NR được ánh xạ theo phương pháp đầu tiên là tần

Một phần của tài liệu Đồ án tốt nghiệp ngành thông tin nghiên cứu công nghệ truy cập vô tuyến mới trong 5g (Trang 64)

Tải bản đầy đủ (PDF)

(105 trang)