Giii thich n6i tai sao nhirng hpc sinh cua m6t :

Một phần của tài liệu Tạp chí toán học và tuổi trẻ tháng 1 năm 2007 số 355 (Trang 30)

. iE , fi u! $ Ew ud d,o

giii thich n6i tai sao nhirng hpc sinh cua m6t :

ffiffi ffiffiffi wffiffiw ffi&ffi Yffiffi ffiffiffi

. iE ., fi u! $ E w u d d,o

vff Tr1ffiffif1 rsc["T tr1f]$J'ffiffi ixffiffi ff#r* #exy

LE HAI CHAU

(Trudng doon đu fi6n cua Ccan hoc sinh ViOf NomthiToctn Qudc td t974) thiToctn Qudc td t974)

nhiug tlAn borr. thi6u th6n dLi c1i6Lr nrd dodn

hoc sinh ta vAn lAp n6n ki t{ch.

Til rrdrn dAu ti6n 1974 d6n 2006, trong 30 nam

du thi, chi6n c6ng n5i tiilp chi6n c6ng. Chirng ta

đ dAn đn khang dinh trf tir6ng rninh, 6c s6n-e

tao vịkhA ndng to lon.cira hoc. sinh Vi6t Narl.

cira tu6i tr6 Vi6t Nam d5i v6'i th6 gi6.ị

Hiy nliin lai thinh tich l3 nirrr gAn dAy cLradodn Vi0t hlarl tir nani 1995 óCanada d€n nirn dodn Vi0t hlarl tir nani 1995 óCanada d€n nirn

2006 tai SI6r'€nia

Ndnr Nudc cfing cai VtirtgHC Br,rcHC DingHC

1 995 Canada 2 4 1996 An D6 3 I 1 199',7 Achentina 5 1 998 Ddi Loan J ) 1999 Rurrani a ) ') 2000 Hdn Qu6c J 2 I 2001 Hoa K! 4 2002 Arrh J 1 2 2003 Nhat 2 J 2004 Hy Lap 4 2 2005 M6hic6 J ) 2006 Sl6vCnia 2 2 2

Trong c6c gi6i md dodn hoc sinl-r ta doat duo-c

trong 30 nf,rn dg thi phii tC a6n gi6i D[c bi6t

đnlr cho "Ld'i giai dgp vd d6c d6o" tqi ki thi n5m

1979 6 LuAn D6n, Vuo-ng qu6c Anh. Le 86

Kh6nh Trinh đ doat hai giai: giAi Nh6t tuy6t d6i

40140 vir gi6i Dnc bi6t dLry nhAt n6i tr0n.6em ildp tuang l5) 6em ildp tuang l5)

i*V,/

i$l-be t,i khi nLroc ta tharn gia ki thi Todn QLr5c

tC IMO (lnternational Mathernatical Olyrnpiacl)

lin clAu ti6n hd 1974 tai C}IDC Dirc d6n n5m

2006 vira tron 30 ki thi chirng ta tham gia (ba

ndnr kh6ng dr,r thi ld: r-rdrn 1911 tai Nam Tu,

nim 1980 th6 gi6'i kh6ng t6 chirc vd n[m l98l tai M!).

Chr,'rng ta hdy nhin Iai chdng duóng 30 narn d6

th6y rd thAnh tich vi kh6 khdn rrong vi6c rham

dúkithi IN4Ọ

Vd thdnh tich, ndm dAu ti6n dodn hoc sinir

gi6i Todn cira nu6'c ta du thi (hd 1974) đ iat

kt5t quA r6t d6ng tu hdo: I Huy chúong Vdng (Hodng L6 Minh), I Huy chuong Bac (Vfr Dinh

Hda), 2 Huy chuong D6ng (Ddng Hodng Trung

vd Ta H6ng QuAng), ri6ng Nguy6n Qu6c Thang

chithitiu 1 ditirn nfr'a Id doat HLry chr-rong Ddng.

Trong khi cu6c kh6ng chir5n ch6ng M! cr}a

nhdn dAn ta dang vdo thd'i ki 6c li6t, khi c6c hoc

sinh c[ra dodn ta phii hoc ó r'rói s<r t6n thi k6t qLrA thi To6n Qu6c tri cira Vi6t Narn đ g6y

drro-c tieng vang trong vd ngodi nu6'c. Ch[rng ta

tp' hdo khi doc bAi b6o sau cIAy cira tó "Buu dien .x,.t

hang tuarr" so ra rrgdy 28-8-1914 cfra nú6'c CHDC Dríc:

"lrlgudi ta v6 tuy tdu nhdt dO hoan nghAnh dodn hoc sinh Viil Ítam litn đu chr thi đ

,,: t I

chiim b6n giai voi ndm ern thị Ldm th€ ndo mit

giii thich n6i tai sao nhirng hpc sinh cua m6t-: -:

giii thich n6i tai sao nhirng hpc sinh cua m6t-: -:

kln nl'nr thẢ "

D[rng lir kh6 tLróng tu(lrg n6i, tiL m6t dAt nu6c

bi 852 tdn ph6, til nhff'ng m6i trúd'ng so t6n, hoc

hdnh b0n canh nhirng chi6c hAm chir A, ban d6m du6i 6nh đn dAu leo l6t, ban ngdy gifr'a

Một phần của tài liệu Tạp chí toán học và tuổi trẻ tháng 1 năm 2007 số 355 (Trang 30)

Tải bản đầy đủ (PDF)

(36 trang)