Kiến trúc IEEE 802 định nghĩa hai phương thức: Share Medium và song công. Trong phuơng thức chia sẽ trung gian (Share Medium), tất cả các trạm được kết nối
đến miền truy nhập đơn, ở đó phần lớn một trạm có thể phát tại một lúc và tất cả
các trạm có thể nhận bất cứ lúc nào. Trong phương thức song công, đó là sự kết nối
điểm-điểm kết nối hai trạm và cả hai trạm có thể phát và nhận đồng thời. Dựa vào
định nghĩa đó, các cầu không bao giờ chuyển tiếp khung quay trở lại cổng vào của nó. Nói khác, nó cho rằng tất cả các trạm được kết nối đến cùng một cổng của cầu và có thể truyền thông với nhau mà không cần thông qua cầu. Phương thức này đã tạo ra khả năng các người dùng được kết nối đến các ONU khác nhau trong cùng mạng PON và có thể truyền thông với nhau mà dữ liệu không cần xử lý ở lớp 3 hoặc lớp cao hơn.
Point to Point Emulation
Trong mô hình này, OLT phải có N cổng MAC, một cổng cho một ONU( hình 1.20). Khi một khung được gửi xuống (từ OLT đến ONU), lớp con PtPE trong OLT sẽ chèn LinkID kết hợp với cổng MAC cụ thể vào khung dữ liệu. Các khung sẽ được chia sẽ cho từng ONU nhưng chỉ một lớp MAC của nó. Ở lớp MAC của các ONU còn lại sẽ không nhận được khung này. Trong khả năng này, nó sẽ xuất hiện nếu chỉ khi khung được gửi theo kết nối PtP chỉ cho một ONU.
Chèn LinkID kết hợp với cổng MAC Chấp nhận khung nếu LinkID phù hợp Từ chối khung nếu LinkID không phù hợp Tách khung theo cổng trong LinkID Chèn LinkID được ấn định cho ONU
Hình 1.20-Hướng xuống trong PtPE
Ở hướng lên, ONU sẽ chèn LinkID được ấn định của nó vào mào đầu của mỗi khung được chuyển. Lớp con PtPE trong OLT sẽ tách khung để nhận biết cổng MAC chính xác dựa vào LinkID duy nhất cho mỗi ONU.(hình 1.21).
Hình 1.21-Hướng lên trong PtPE
Cấu hình PtPE thích hợp với cầu khi mỗi ONU được kết nối đến một cổng độc lập của cầu. Cầu được đặt trong OLT sẽ chuyển tiếp lưu lượng vào trong ONU giữa các cổng của nó.
Hình 1.22-Cầu giữa các ONU trong PtPE Share Medium Emulation
Trong SME, bất kỳ một Node nào (OLT hay ONU) sẽ chuyển khung dữ liệu và sẽ được nhận ở tất cả các Node (OLT và ONU). Trong hướng xuống, OLT sẽ chèn một LinkID quảng bá mà mọi ONU đều chấp nhận (hình 1.23). Để đảm bảo hoạt
động Share Medium cho hướng lên, lớp con SME trong OLT phải nhản ánh tất cả
các khung trở lại hướng xuống để tất cả các ONU nhận chính khung dữ liệu của nó thì lớp con SME ở ONU chỉ thừa nhận khung nếu LinkID của khung đó khác với LinkID của nó.
Hình 1.23-Hướng truyền xuống trong SME
Chèn LinkID quảng bá
Chấp nhận tất cả các khung ngoại trừ
Chấp nhận tất cả các khung và phản hồi lại
hướng xuống
Khi truyền khung, chèn LinkID
Khi nhận khung, từ chối LinkID của chính nó
Hình 1.24-Hướng truyền lên trong SME
SME chỉ yêu cầu một cổng MAC trong OLT. Chức năng vật lý của lớp này (lớp con SME) là cung cấp truyền thông ONU đến ONU, không cần cầu liên kết.
Bằng sự kết hợp với chuẩn 802 cũ, mạng PON mở ra một hướng đi mới cho thế
hệ mạng quang thụ động. Mạng PON sẽ sử dụng kết hợp 2 mô hình mạng điểm-
điểm và điểm-đa điểm nhằm tối ưu hóa việc truyền tải dữ liệu và các dịch vụ video trong thời gian thực với chất lượng cao.
Chương II : KIẾN TRÚC BỘ THU-PHÁT TRONG MẠNG PON
2.1.Đặc điểm chung
Bộ thu phát quang chiếm vai trò quan trọng nhất trong hệ thống thông tin quang hiện nay bởi chúng thực hiện nhiệm vụ cơ bản nhất trong mạng quang là biến đổi tín hiệu quang thành tín hiệu điện. Các bộ thu phát quang sử dụng laser bán dẫn và thiết bị nhận được kết hợp trong một linh kiện tích hợp đã làm giảm giá thành thiết bị mang lại ý nghĩa vô cùng quan trọng trong việc truyền nhận tín hiệu tương tự và số thông qua sợi quang. Transceiver (là thuật ngữ kết hợp của transmitter và receiver) được xem là thành phần chính làm giá thành của việc lắp đặt mạng quang tăng lên khá cao. Chính vì vậy, trên thế giới có rất nhiều nghiên cứu để thiết kế bộ
thu-phát có giá thành rẻ, hiệu suất cao và gọn nhẹ, dễ dàng sử dụng trong thực tế. Cáp quang đã được biết đến từ những năm 1990. Ban đầu, mạng sử dụng cáp quang chỉ có tốc độ khoảng 100Mbps. Sau đó, mạng này được nâng cấp có thểđạt tới tốc độ từ 150-600 Mbps dựa vào kiến trúc SDH. Sau đó, kiến trúc mạng sử dụng các gói ATM đã được thay thế mạng Ethernet trước đó nhằm nâng cao tốc độ của mạng. Từ đó, chuẩn đầu tiên cho mạng PON là G.893 được ITU-T đưa ra năm 1998. Đồng thời, hệ thống mạng PON tốc độ 100Mbps đã được phát triển và đưa vào sử dụng trong thương mại nhưng chỉ trong một số vùng giới hạn và giá thành khá cao. Trong khoảng thời gian 3-4 năm sau, tốc độ mạng PON được cải thiện lên tới hơn 1Gbps và ủy ban IEEE đã đưa ra chuẩn 802.3 ah (chuẩn EPON) vào tháng 6 năm 2004. Một vài nhà cung cấp tại Nhật Bản như NTT đã đề xuất một hệ thống với chuẩn GPON dành cho các ứng dụng thực tế. Cùng trong thời gian này, ITU-T
đưa ra chuẩn GPON với tốc độ luồng lên 1,244 Gbps và tốc độ luồng xuống lên tới 2,488 Gbps. Các bộ thu phát quang tuân theo những chuẩn này được đưa ra thành các chip và các module cùng với sự phát triển của các thiết bị truyền tín hiệu quang đã nâng cao tốc độ của các ứng dụng trong mạng FTTH.
2.1.1.Yêu cầu đối với mạng PON
Bảng 2.1 dưới đây đưa ra tỉ số chia và dự trữ công suất cho từng kiến trúc mạng PON ở 3 chuẩn khác nhau. BPON có thể cung cấp từ 16 đến 32 ONU và khả năng phân phối băng thông linh hoạt. Cả 2 mạng BPON và GPON đều tuân thủ theo 3 lớp A, B, C của chuẩn G.982 của ITU-T với dự trữ công suất lần lượt là 20, 25, 30 dB giữa OLT và ONU. GPON được nâng cấp từ BPON với tốc độ cao hơn có thể
sử dụng chung cho đến 128 node. Đồng thời, GPON cho phép tỉ số chia cao hơn mang BPON khá nhiều tức là có thể phục vụ số lượng thuê bao cao hơn so với BPON rất nhiều nhưng nó cũng bị hạn chế bởi dự trữ công suất.
Chuẩn 802.3 ah cũng xác định rõ khoảng cách truyền nhận chỉ từ 10-20 km. Lớp vật lý cũng sử dụng chuẩn 1000BASE-TX10 hoặc 1000BASE-TX20. EPON có thể
cung cấp tối thiểu 16 bộ chia quang chỉ cần hiệu suất có thể vượt qua một giá trị
giới hạn chấp nhận được, tỉ số chia cũng không được xác định rõ ràng bởi nó phụ
thuộc chính vào suy hao của cáp quang và khả năng thiết bị lớp vật lý trong thực tế. Trong thực tế, mạng EPON có thể cung cấp tỉ số chia 1:32 hoặc 1: 64 tùy thuộc vào dự trữ công suất trong thực tế.
Bảng 2.1-Dự trữ công suất [6]
Dự trữ công suất quang trong từng được quyết định bởi các nhà cung cấp khác nhau do chúng phụ thuộc trực tiếp vào các linh kiện tích cực của nhà sản xuất như
laser, bộ thu và PON chip. Thông thường các thiết bị trong mạng BPON sử dụng theo chuẩn lớp B nhưng một vài tuyến truyền dẫn có độ dài 20km trong thực tế yêu
cầu dự trữ công suất cần thiết cao hơn. Chính điều đó làm cho một số thiết bị tích cực trong thực tế phải có dự trữ công suất lên tới 26,5dB; nhờ vậy làm tăng khả
năng ghép với các thiết bị khác trong mạng, tăng tỉ số chia của mạng BPON đồng thời cho phép mạng có khả năng chấp nhận dự trữ công suất là 28dB. Do đó, lớp B+
được đưa ra trong chuẩn G.982.
Với chuẩn G.982 lớp A thường được sử dụng cho các ứng dụng của mạng FTTC thì chuẩn G.982 lớp B và B+ được sử dụng trong mạng FTTP ngày nay với chất lượng và tỉ số chia tốt nhất. Hơn nữa, mặc dù chuẩn lớp B+ có chất lượng tốt hơn nhưng nó không có giá thành cao như mạng tuân theo chuẩn lớp C (cung cấp chất lượng mạng có dự trữ công suất cao hơn) nhờ các IC có độ nhạy cao và tạp âm nhỏ. Trong thực tế các nhà cung cấp mạng thường sử dụng chuẩn B+ để cung cấp mạng cho thuê bao sử dụng. Trong tương lai, các nhà cung cấp sẽđưa tới những thiết bị
có thể sử dụng cho tuyến truyền dẫn khoảng cách xa hơn (từ 30-40km) với tỉ số
chia lên tới 1:128 như chuẩn lớp C.
2.1.2.Lớp vật lý mạng PON
Đặc điểm lớp vật lý trong mạng phụ thuộc trực tiếp vào tính chất vật lý của cơ sở
hạ tầng mạng mà cụ thể trong mạng PON là khả năng biến đổi tín hiệu quang-điện và ngược lại, khả năng khôi phục định thời cho xung clock và dữ liệu được truyền trong mạng. Lớp vật lý sẽ trực tiếp mang dòng dữ liệu nhận được truyền tải lên các lớp trên và cũng chịu trách nhiệm biến đổi dữ liệu từ các lớp trên chuyển tới thành các tín hiệu quang để truyền đi. Vì vậy, đặc điểm vật lý của mạng PON sẽ quyết
định bởi công suất phát, độ nhạy thu cho từng mạng với dự trữ công suất và tốc độ
truyền tải khác nhau. Bảng 2.2 dưới đây xác định đặc điểm của lớp vật lý trong mạng BPON theo chuẩn G.982.
Bảng 2.2-Tính chất lớp vật lý của mạng BPON [7]
Sau khi đưa ra chuẩn BPON, mạng GPON được đề xuất để thay thế BPON bởi khả năng truyền tải tốc độ cao. Trong khi GPON được dùng để phục vụ tất cả các dịch vụ khác nhau thì mục đích thiết kế mạng EPON chỉ dành để truyền tải các gói dữ liệu trong mạng Ethernet. ITU-T đã cố gắng đưa ra một chuẩn chung cho lớp vật lý mạng EPON nhưng bởi tính chất khác nhau giữa 2 mạng này nên đặc điểm lớp vật lý của EPON và GPON có sự khác biệt theo bảng 2.3.
Bảng 2.3-Lớp vật lý mạng EPON và GPON [8] 2.1.3.Định thời cho chếđộ burst-mode trong mạng PON
Truyền tải chếđộ burst-mode trong mạng PON theo hướng lên yêu cầu định thời rất nghiêm ngặt giữa OLT và ONU. Hình 2.1 dưới đây minh họa định thời cho chế độ burst-mode của lớp vật lý mạng PON với dòng dữ liệu tuyến lên phát ra từ ONU tới OLT.
Kỹ thuật đa truy nhập và khả năng truyền nhận chế độ burst-mode yêu cầu phần phát của ONU cần phải truyền đi tín hiệu định thời mở đầu trong khe thời gian
được chỉ định bởi lớp MAC; nói cách khác là công suất tín hiệu laser và tỉ số phân biệt mức tín hiệu cần phải ổn định trong khoảng thời gian này đồng thời không thay
đổi trước khi khe thời gian hoàn thành công việc. Trong suốt các khe thời gian chỉ định cho các ONU, phần phát của mỗi ONU phải được tắt hoặc không được truyền
đi tín hiệu quang; nếu không nó sẽ gây ra nhiễu xuyên kênh và ảnh hưởng tới dòng tín hiệu tuyến lên. Điều này yêu cầu các chuyển mạch phía phát của ONU phải có thời gian chuyển mạch nhanh (thông thường có thời gian lên và xuống của tín hiệu trong khoảng dưới ns) sau khi bật hoặc tắt nguồn hay khi bắt đầu tiến hành kết nối với mạng.
Hình 2.1-Định thời cho chếđộ burst mode [9]
Tóm lại, có 2 yêu cầu cơ bản cho phần phát của ONU là : có thời gian chuyển mạch và khởi động nhanh bởi nó chiếm vai trò rất quan trọng đối với thiết bị có tỉ
số chia cao (khả năng nhanh chóng khôi phục lại kết nối sau khi có lỗi xảy ra trong mạng chịu ảnh hưởng rất lớn của số lượng ONU có trong mạng), có khả năng nhanh chóng phát hiện sự trôi của tín hiệu trong mạng (điều này rất quan trong khi cần truyền tải những gói dữ liệu lớn chiếm khoảng thời gian khá dài ở trong mạng). Phần thu của OLT phải có độ nhạy thu cao (phát hiện những lỗi trong mạng do sự
thay đổi nhỏ của công suất tín hiệu phát), dải động lớn và đáp ứng nhanh. Thông thường, mỗi ONU có suy hao truyền dẫn khác nhau tới OLT do khoảng cách khác nhau của các ONU tới OLT; bởi vậy, OLT cần phải nhận biết nhanh chóng các tín hiệu burst có biến thiên về biên độ và pha rất lớn ở trong mạng. Trong trường hợp xấu nhất xảy ra là khi một tín hiệu burst có biên độ rất thấp theo sau là tín hiệu burst với biên độ lớn hơn rất nhiều thì OLT cần phải nhanh chóng xác định sự biến thiên giữa biên độ 2 tín hiệu với thời gian xác lập rất ngắn.
Bảng 2.4 dưới đây tổng kết định thời trong mạng BPON, GPON và EPON. Như
bảng dưới đây, mạng BPON và GPON có yêu cầu định thời rất nghiêm ngặt. Trong mạng BPON, các khung dữ liệu tuyến lên gồm 53 khe thời gian, mỗi khung gồm 3 byte PLP và 1 byte CRC đặt ở phần đầu mỗi khung. Khi 2 khe thời gian liên tục
được cấp phát cho ONU khác nhau thì trong thời gian truyền 4 byte này (chiếm khoảng 205.8 ns) đủ thời gian để làm tắt laser phát ở ONU đầu tiên , bật laser phát tại ONU thứ 2, thực hiện khuếch đại và đồng bộ xung clock ở OLT. GPON có các tham số yêu cầu định thời chặt chẽ hơn. Ví dụ, trong mạng GPON với tốc độ
1,244Gbps chỉ cần dùng 32 bit trong khoảng thời gian bảo vệđể thực hiện quá trình bật và tắt laser, 44 bit PLP được chỉ định cho việc điều khiển khuếch đại và đồng
bộ xung clock phía thu. Bảng 2.5 liệt kê các đặc trưng cơ bản của chuẩn GPON lớp B dùng cho lớp vật lý PMD (Physical Medium Dependant) trong tuyến lên do ITU- T đề xuất trong chuẩn G984.2.
Bảng 2.4-Định thời chếđộ burst mode cho GPON và EPON [8,10]
Trong rất nhiều trường hợp, dải động của tín hiệu tới từ rất nhiều các ONU khác nhau yêu cầu thời gian thiết lập khá dài so với khoảng thời gian bảo vệ được chỉ định trước. Để giảm thời gian điều chỉnh dải khuếch đại cần thiết thì trong mạng BPON và GPON thực hiện phương pháp PLM (Power Leveling Mechanism) mà theo phương pháp này, OLT sẽ hướng dẫn các ONU khác nhau tựđiều chỉnh công suất phát của bản thân nó. Vì vậy, mức tín hiệu thu được tại OLT của các ONU khác nhau sẽ gần giống nhau không cần phải điều chỉnh khuếch đại và thời gian thiết lập.
Bảng 2.5-Tham số cơ bản cho chuẩn GPON lớp B cho tầng PMD [8]
Bảng 2.6 liệt kê tất cả các tham số chính của giao tiếp quang PMD và đặc điểm tín hiệu và định thời của tầng vật lý trong mạng EPON tuyến lên với khoảng cách truyền dẫn là 20km :
1. Laser Fabry- Perot được giả thiết sử dụng trong mạng này. Giá trị của độ
rộng phổ cho phép được liệt kê trong chuẩn 802.3ah.
2. Mạng phân phối quang ODN : PX10 (0.5-10km, 5-20dB); PX20 (0.5-20km, 5-24dB)
3. Trong trường hợp tất cả các tham số trong mạng ở tình trạng xấu nhất thì tán xạ đơn sắc trong mạng cần phải có giá trị dưới 1,5dB. Tán xạ đơn sắc của mạng là một thành phần quan trọng của tham số TDP (Transmit and Dispersion Penalty).
4. Dải động của phía thu được liệt kê theo giá trị ngưỡng trong từng trường hợp Tuy nhiên, mạng EPON cũng có nhiều đặc điểm khác biệt so với 2 mạng trên tại tầng vật lý. Ban đầu theo chuẩn 802.3, có rất nhiều các giải pháp khác nhau cho việc định thời chế độ burst mode như việc sử dụng laser có khoảng thời gian thiết lập ngắn, sử dụng mạch tự điều chỉnh khuếch đại AGC (Auto-gain Control) và
mạch khôi phục xung clock cùng dữ liệu CDR (Clock Data Recovery) tương tự như
trong mạng GPON. Sau khi phân tích và thử nghiệm, chuẩn 802.3 xác định các tham số cố định về định thời như sau : thời gian bật laser là 512 ns, thờigian tắt laser là 512 ns, thời gian thiết lập của phía thu dưới 400ns. Do các thiết bị ONU là