[1] L¶ Tu§n Hoa, ¤i sè tuy¸n t½nh qua c¡c v½ dư v b i tªp, Nh xu§t b£n ¤i håc quèc gia H Nëi, 2006.
[2] D. Kinderlehrer, G. Stampacchia, An Introduction to Variational Inequalities and Their Applications, Academic Press, NewYork - London, 1980.
[3] G. M. Lee, N. N. Tam, N. D. Yen, Quadratic Programming and Affine Variational Inequalities A Qualitative Study, Series Non- convex Optimization and its Applications, Vol.78, Springer Verlag, NewYork, 2005.
[4] N. T. T Huong, T. N. Hoa, T. D. Phuong and N. D. Yen, A property of bicriteria affine vector variational inequality, Applicable Analy- sis: An international Journal, Volume 91, Issue 10, 2012, pp.1867 - 1879.
[5] F. Giannessi, Theorems of alternative, quadratic programs and complementarity problems,in Variational Inequality and Comple- mentarity Problems, R.W Cottle, F. Giannessi, and J-L. Lions, eds, Wiley, NewYork, 1980, pp. 151 - 186.
[6] G.M. Lee, D. S Kim, B. S. Lee, and N. D. Yen, Vector variational inequalities as a tool for studying vector optimization problems, Nonlinear Anal. 34 (1998), pp. 745 - 765.
[7] N. D. Yen and G. M. Lee, On monotone and strongly monotone vector variational inequalities, in pp. 467 - 478.
[8] S. M. Robinson, Generalized equations and their solutions, Part I: Basic theory, Math. Program. Study 10 (1979), pp.128 - 141. [9] G. M. Lee and N. D. Yen, A result on vector variational inequalities
with polyhedral constraint sets, J. Optim. Theory Appl. 109 (2001), pp.193 - 197.
[10] N. D. Yen and J.-C. Yao, Monotone affine vector variational in- equalities, Optimization 60 (2011), pp. 53-68.
[11] N. D. Yen, Linear fractional and convex quadratic vector opti- mization problems, in Recent Developments in Vector Optimiza- tion, Q. H. Ansari and J. -C. Yao, eds., Springer- Verlag, 2012, pp. 297 - 238.
[12] R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, NewYork, 1970.