Kết cấu 8 tầng được điều khiển bằng AMD

Một phần của tài liệu (LUẬN văn THẠC sĩ) phát triển thuật toán điều khiển tích cực phản hồi cho các kết cấu trong điều kiện đo hạn chế đáp ứng (Trang 112 - 152)

Hệ thống điều khiển tích cực AMD bao gồm 1 khối lượng phụ md kết nối với kết

cấu qua một lị xo có độ cứng kd, một bộ cản có độ cản cd và một máy kích động

thủy lực tạo ra lực điều khiển tích cực u(t). Phương trình chuyển động của kết cấu

md cd

kd u u

được thành lập từ các phương trình Lagrange. Động năng T, thế năng V, hàm hao tán F và các lực suy rộng Qxi (i=1,..8), Qxd lần lượt là:

  2 2 8 8 8 2 2 1 1 1 1 8 2 2 1 1 1 1 1 , , 2 2 2 2 1 1 , 0 1,..8 , 2 2 i g j d g j d i d d i j j i i d d xi xd i T m x x m x x x V kx k x F cx c x Q i Q u                                   (4.66)

trong đó xi (i=2,..8) là chuyển dịch tương đối của tầng thứ i so với tầng thứ i-1, x1 là chuyển dịch của tầng 1 so với nền, xg là chuyển dịch của nền bị gây ra bởi động đất và xd là chuyển dịch của khối lượng phụ md so với tầng thứ 8. Phương trình chuyển động Lagrange có dạng         , 1,..8 xi i i i xd d d d T V T V d F Q i dt x x x T V T V d F Q dt x x x                                           (4.67)

sử dụng các biểu thức (4.66) vào (4.67) ta thu được phương trình vi phân cấp 2 có dạng:       u   f  ,  0 0,  0 0 Md t  Dd tKd tL u tL f t dv dd (4.68) trong đó 8 7 6 ... 1 7 7 6 ... 1 6 6 6 ... 1 1 1 1 1 1 1 M m                                                                    , ,..., , dD diag c cc c ;K diag k k  , ,..., ,k kd  1 2 ... 8 dT dx x x x ,Lu 0 0 0 ... 1T 8 , 7 , 6 , ... 1 , T f L        m, f t x tg 

với =md/m là tỷ số khối lượng. Phương trình chuyển động (4.68) sau đó được thể

hiện dưới dạng phương trình trạng thái nhờ vào các biểu thức (2.6). Trong ví dụ này, vectơ trạng thái có 18 thành phần:

 1 2 8 1 2 8  18 ... ... T T T T d d xd d   x x x x x x x x   (4.69)

Trong trường hợp thụ động (khơng có lực điều khiển), các giá trị tối ưu của lò xo và bộ cản của AMD đã được xác định trong nhiều tài liệu, chẳng hạn như [Warburton 1982]. Nói chung, các tham số này được điều chỉnh sao cho tần số riêng của hệ phụ gần với tần số riêng của kết cấu. Trong ví dụ này, các thơng số của hệ phụ lấy từ [Yang 1982] có các giá trị là md=29.3 tấn, cd=25.0 kN/sec và kd=957.2 kN/m. Như vậy, tần số riêng của hệ phụ được điều chỉnh bằng khoảng 98% tần số riêng đầu tiên của kết cấu. Mục tiêu của điều khiển là giảm đáp ứng chuyển dịch của tầng cao nhất. Theo định nghĩa, các giá trị xi (i=1,..8) là chuyển dịch tương đối của tầng thứ i so với tầng dưới nó nên chuyển dịch của tầng 8 sẽ là x1+x2+..+x8. Dùng ký hiệu

vectơ trạng thái (4.69), ta có: 2 8 1 8 10 8 10 1 1 ... 1 0 0 ... 0 1 1 ... 1 0 0 ... 0 T T i i x x x                      (4.70)

Vậy, trong chỉ tiêu (2.7), ma trận Q có cỡ 1818 được chọn bằng:

8 10 8 10 1 1 ... 1 0 0 ... 0 1 1 ... 1 0 0 ... 0 T Q                  (4.71) Vì chỉ có một lực điều khiển nên ma trận trọng số R là một vơ hướng, trong ví dụ

này ta chọn giá trị là 10-9. Như đã thảo luận trong chương 2 thì điều kiện ổn định của thuật toán LQG và thuật toán điều khiển nâng cao phiên bản 1 là giống nhau. Do đó, trong ví dụ này ta chỉ xét sự ổn định của các thuật toán LQG và điều khiển nâng cao phiên bản 2. Giả sử rằng có 2 đầu đo chuyển dịch, 1 đầu đo đo chuyển dịch tương đối giữa tầng 7 và tầng 8, đầu đo còn lại đo chuyển dịch tương đối của AMD so với tầng 8. Ma trận đo C sẽ có hai hàng, có các thành phần bằng 0 ngoại trừ 2 thành phần C1,8 và C2,9. Để thiết kế bộ quan sát, cần xác định các ma trận trọng

số W và V. Ma trận W được chọn bằng HHT với H là ma trận định vị kích động

ngoài. Ma trận V được chọn bằng I2 trong đó I2 là ma trận đơn vị 22 cịn  là một tham số có thể thay đổi được. Giảm  sẽ tăng hiệu quả của bộ quan sát nhưng đồng thời lại làm tăng độ lớn các thành phần của ma trận phản hồi Ge trong bài toán điều khiển sai số quan sát e(t). Như đã thảo luận, tăng Ge sẽ dẫn tới khuyếch đại thời

gian trễ và hệ có thể sẽ trở nên khơng ổn định.

Xét hệ có thời gian trễ đo là y=0.1s và khơng có thời gian trễ điều khiển (u=0). Thời gian trễ  để khử vịng lặp đại số của thuật tốn điều khiển nâng cao phiên bản 2 được lấy giá trị bằng 0.1s. Tổng thời gian mô phỏng số là 30s. Mô phỏng số được thực hiện với hệ không được điều khiển cũng như hệ được điều khiển bởi thuật toán LQG và thuật toán điều khiển nâng cao phiên bản 2. Các kết quả lấy ra bao gồm chỉ tiêu tích phân J, các giá trị căn trung bình bình phương RMS của chuyển dịch tuyệt đối của tầng 8, chuyển dịch tương đối của AMD và lực điều khiển. Kết quả được cho trên các Bảng 4.6, Bảng 4.7 và Bảng 4.8. Kết quả tính cho thấy rằng ma trận phản hồi Ge của bộ quan sát nếu tăng quá lớn có thể làm mất ổn định của hệ do ảnh hưởng của thời gian trễ đo.

Bảng 4.6: Đáp ứng khi chưa điều khiển

Chỉ tiêu đánh giá J (cm2s) 220.18 RMS chuyển dịch tuyệt đối của tầng 8 (cm) 3.83 RMS chuyển dịch tương đối của AMD (cm) 19.23

Bảng 4.7: Đáp ứng của hệ khi điều khiển bằng thuật toán LQG

=10-1 =10-2 =10-3 =10-4

Chỉ tiêu đánh giá J (cm2s) 165.19 115.04

Mất ổn định Chuyển dịch tuyệt đối của tầng 8 (cm) 3.31 2.74

Chuyển dịch tương đối của AMD (cm) 26.27 31.74

Bảng 4.8: Đáp ứng của hệ khi điều khiển bằng thuật toán điều khiển nâng cao phiên bản 2

=10-1 =10-2 =10-3 =10-4

Chỉ tiêu đánh giá J (cm2s) 126.45 95.57

Mất ổn định Chuyển dịch tuyệt đối của tầng 8 (cm) 2.78 2.33

Chuyển dịch tương đối của AMD (cm) 38.45 41.47

Lực điều khiển (kN) 265.81 306.13

Cả thuật toán LQG và thuật toán điều khiển nâng cao phiên bản 2 đều bị mất ổn định khi giảm  (tức là tăng độ lớn các thành phần của ma trận phản hồi Ge). Tuy nhiên, khi so sánh về chỉ tiêu đánh giá J thì thuật tốn điều khiển nâng cao phiên bản 2 có cải thiện hơn.

KẾT LUẬN

Mục tiêu của luận án là khắc phục những hạn chế của thuật toán điều khiển phản hồi kinh điển cho các hệ có điều kiện đo hạn chế đáp ứng. Cơ sở cho sự cải thiện này dựa trên thuật tốn nhận dạng kích động ngồi. Kích động ngồi sau khi được nhận dạng sẽ được sử dụng để tạo ra thành phần dẫn tiếp bổ sung thêm cho thành phần hồi tiếp của thuật tốn kinh điển. Các kết quả chính của luận án bao gồm

- Đề xuất cải thiện thuật toán điều khiển kinh điển LQR đối với bài toán điều khiển không hạn chế đo bằng cách bổ sung thêm một thành phần dẫn tiếp dựa trên kích động ngồi được nhận dạng.

- Đề xuất phương thức xác định vị trí đặt lực tối ưu.

- Đề xuất cải thiện thuật toán điều khiển dạng Kalman Bucy đối với bài tốn điều khiển khơng hạn chế đặt lực bằng cách bổ sung thêm một thành phần dẫn tiếp dựa trên kích động ngồi được nhận dạng.

- Đề xuất phương thức xác định vị trí đặt đầu đo tối ưu.

- Bằng phương pháp tách, bài toán điều khiển phản hồi đầu ra tổng quát của các hệ bị hạn chế điều kiện đo được tách thành 2 bài toán: bài toán điều khiển biến trạng thái xấp xỉ (là bài tốn khơng hạn chế đo) và bài toán điều khiển biến sai số quan sát (là bài tốn khơng hạn chế đặt lực). Trên cơ sở đó, luận án đã để xuất 2 phiên bản điều khiển nâng cao cho bài toán điều khiển đầu ra tổng quát.

- Mô phỏng số được thực hiện trên một số lượng đáng kể các ví dụ trong nhiều lĩnh vực khác nhau như điều khiển dao động phương tiện chịu tải mặt đường, điều khiển máy bay trong chế độ bay tự động, điều khiển dao động kết cấu chịu tải động đất, điều khiển dao động kết cấu chịu tải sóng và tải gió, điều khiển dao động của dầm ngang chịu tải sóng, điều khiển quỹ đạo của ăng ten.

Ngoài những nội dung đã được nghiên cứu trong luận án, một số vấn đề sau có thể trở thành những nghiên cứu phát triển trong tương lai:

- Luận án mới chỉ nêu ra khả năng mất ổn định của điều khiển do ảnh hưởng của thời gian trễ qua các ví dụ số. Về mặt lý thuyết, cần có những khảo sát kỹ lưỡng để chỉ ra mối quan hệ thực sự giữa thời gian trễ và sự mất ổn định của điều khiển, chỉ ra thời gian trễ tới hạn khi bắt đầu xảy ra mất ổn định.

- Các thuật toán hồi tiếp kinh điển cũng như thuật tốn nhận dạng kích động ngồi được nghiên cứu trong luận án đều là các thuật tốn phụ thuộc vào mơ hình kết cấu. Do đó, ảnh hưởng của các sai số và bất định trong mơ hình hóa kết cấu cần được khảo sát.

- Các tính tốn số của luận án chưa quan tâm tới động lực của máy kích động. Trong các ứng dụng thực tế, mơ hình của các loại máy kích động cũng cần được xét đến, đặc biệt là các loại máy kích động sử dụng các cơng nghệ của vật liệu mới.

- Các bài toán trong luận án được đặt ra dưới dạng điều khiển liên tục, tức là lực điều khiển là một hàm liên tục của biến đo. Trên thực tế, khi sử dụng máy tính số, lực điều khiển được tạo ra bởi các tín hiệu số và thực chất là biến rời rạc. Nghiên cứu chuyển đổi giữa cấu trúc liên tục và rời rạc cần được xét đến.

DANH MỤC CƠNG TRÌNH KHOA HỌC CỦA TÁC GIẢ LIÊN QUAN ĐẾN LUẬN ÁN

1. N.D.Anh, L.D.Viet (2002), "On the local optimal control counterforces in active controlled structures", Proceedings of the International Conference on Advances in

Building Technology, HongKong, pp 937-944.

2. Nguyen Dong Anh, La Duc Viet (2004), "A version of identification control algorithm for feedback active controlled nonlinear systems", Proceedings of The 8th

International Conference on Mechatronics Technology, Hanoi, pp 239-243

3. Nguyen Dong Anh, La Duc Viet (2006), "An approach to extend the identification algorithm for output feedback active control", Advances in Natural Sciences, Vol.7, No.1, Hanoi, pp 1-11

4. La Duc Viet, Nguyen Dong Anh (2007), "On a feedback-feedforward identification control algorithm for feedback active controlled structures", Journal of Mechanics, Vol 29, No 4, pp 507-516

5. La Duc Viet, Nguyen Dong Anh (to appear 2008), "An extension of the identification algorithm for feedback active control of incomplete measured systems", Journal of Mechanics, Vol 30, No 1

TÀI LIỆU THAM KHẢO Tiếng Việt

1. Muller P.C, Schiehlen W.O (1997), Dao động tuyến tính, NXB Xây dựng, Hà Nội, (Người dịch: Nguyễn Đông Anh).

2. Nguyễn Chỉ Sáng (2004), Nghiên cứu thiết kế bộ hấp thụ dao động cho hệ nhiều bậc tự do, Luận án tiến sĩ Cơ học, Viện Cơ học, Hà Nội

3. Nguyễn Doãn Phước, Phan Xuân Minh (2000), Điều khiển tối ưu và bền vững, NXB KHKT, Hà Nội.

4. Nguyễn Văn Khang (1998), Dao động kỹ thuật, Nhà xuất bản Khoa học và Kỹ thuật.

5. Nguyễn Xuân Hùng (1997), Động lực học cơng trình biển, NXB Khoa học & Kỹ thuật

6. Phạm Công Ngô (2001), Lý thuyết điều khiển tự động, NXB Khoa học kỹ

thuật, Hà Nội.

Tiếng Anh

1. Abdel-Rohman M. and Leipholz H.H., (1978), "Structural control by pole assignment method", Journal of Engineering Mechanics 104, 1159-1175. 2. Adhikari R. and Yamaguchi H. (1996), "Sliding Mode Control of Gust

Response of Tall Buildings", Proc. 2nd Int. Workshop on Struct. Control,

Hong Kong, pp. 11-19.

3. Anh N. D, Schiehlen W. (1994), "An approach to the problem of closure in the non – linear stochastic mechanics", International Journal of Mechanics,

Mecanica, 29, p. 109-123.

4. Anh N.D (2000), "An identification algorithm for feedback active control",

Proc. of the 3rd International Workshop on Structural Control, World

Scientific Publishing Company, Champ-Sur-Marne, pp 27-38

an inverted pendulum type structure by passive and active mass-spring- pendulum dynamic vibration absorber", Proceedings of Asian Symposium on Applied Engineering Mechanics

6. Anh N.D, Ninh T.T (2004a), "Application of fuzzy set theory for vibration control of a gondola lift", Proceedings of International Conference on EMT,

HCM City, 173-180.

7. Anh N.D, Sang N.C (2004b), "On the Optimal Control Force Applied to Tuned Mass Dampers for Multi-Degree-Of-Freedom System", Vietnam Journal of Mechanics, NCST of Vietnam, Vol. 26 , No 1, pp 1-14.

8. API (American Petroleum Institute) (2000), Recommended Practice for Planning, Designing, and Constructing Fixed Offshore Platforms – Working Stress Design, API Recommended Practice 2A-WSD (RP 2A-WSD). Twenty-

First Edition.

9. Applebee T., Hayden D., Bishop R. and Smith T. (1997). “T-AKR 296/RRDF ramp model test”, Hydromechanics Directorate Research and Development Report, CRDKNSWC/HD-142-05.

10. Astrom K.J. and Wittenmark B. (1990), Adaptive Control, Addison Wesley. 11. Balas M.J. (1978), "Feedback Control of Flexible Systems", IEEE

Transacrions on Automatic Control, AC-23, pp 673-9.

12. Balas M.J. (1980), "Active Control of Large Engineering Structures: A Naive Approach", In Leipholz H H E (ed), Strutural control, North Holland,

Amsterdam , pp 107-25.

13. Balas M.J. (1982), "Theory for distributed parameter systems, in Control and Dynamic Systems", Academic Press, N. Y., pp.361-421.

14. Bar-Avi P., Benaroya H. (1996), "Non-linear dynamics of an articulated tower submerged in the ocean", Journal of Sound and Vibration, 190, 77–103

15. Basharkhah M.A., Yao J.T.P (1984), "Reliability Aspects of Structural Control", Civil Engineering Systems, I, pp 224-9.

Princeton.

17. Blakelock J. H. (1991), Automatic Control of Aircraft and Missiles, 2nd ed.,

Wiley, New York.

18. Bode H. W. (1945), Network Analysis and Feedback Amplifier Design, D.

Van Nostrand, NewYork.

19. Burgess J.C. (1981), "Active Adaptive Sound Control in a Duct: A Computer Simulation", Journal of the Acoustical Society of America, Vol.70,pp.715-726. 20. Cao H., Reinhorn A. M. and Soong T. T. (1998), Design of an active mass damper for a tall TV tower in Nanjing,China, Engineering Structures, Vol. 20,

No. 3, pp. 134 143.

21. Carlson J.D., Catanzarite D.M. and St.Clair K.A. (1996), "Commercial magnetorheological fluid devices", Proceedings of the 5th International Conference on ER fluids, MR fluids, and associated technology, U. Sheffield.

U.K., World Scientific, 20-28

22. Casciati F., Faravelli L. and Yao T. (1996), "Control of Nonlinear Structures Using the Fuzzy Control Approach", Nonlinear Dynamics, vol 11, pp. 171-

187.

23. Chang M.I.J. and Soong T.T., "Optimal Control Placement In Modal Control of Complex Systems", J. Math. Anait. Appl., 75, pp 340-358 (1980)

24. Cheng F.Y, Pantelides C.P. (1988) "Optimal placement of actuators for structural control", Tech. Rep. NCEER-88-0037, National Center for

Earthquake Engineering Research, State Univ. of New York at Buffalo, N. Y. 25. Chiang R.Y. (1988), "Modern robust control theory", Ph.D. Dissertation,

Electrical Engineering Department, University of. Southern California.

26. Connor J.J (2002), Introduction to Structural Motion Control, Prentice Hall,

New Jersey.

27. Crawley E.F. and Luis J. (1987), "Use of piezoelectric actuators as elements of intelligent structures", AIAA Journal, Vol 25, pp 1373-1385.

tracking control based state and disturbance observers”, Proc. of National Conference on Engineering Mechanics and Automation, Bach Khoa

Publishing House, 115-128

29. Davenport A. G. (1961), "The Spectrum of Horizontal Gustiness near the Ground in High Winds", Quan. J. Roy. Meteorol. Sot., 87, 194-211.

30. Del Grosso A., Zucchini A. (1995), "Bounded state active control of structures: a set-theoretic approach", Smart Material and Structures, vol. 4,

pp. A15-A24.

31. Dinh Cong Huan, Vuong Thi Dieu Huong, Vu Minh Hung, Do Thi Ngoc Oanh, Nguyen Huy Thuy and Pham Anh Tuan (2004), "Development of a

Một phần của tài liệu (LUẬN văn THẠC sĩ) phát triển thuật toán điều khiển tích cực phản hồi cho các kết cấu trong điều kiện đo hạn chế đáp ứng (Trang 112 - 152)

Tải bản đầy đủ (PDF)

(152 trang)