KĨ THUẬT SINH TRẮC HỌC GIỌNG NÓI.

Một phần của tài liệu Bảo mật mạng Biometric for Network Security potx (Trang 30 - 33)

Sử dụng giọng nói cho xác thực Sinh trắc học dường như rất tự nhiên và thích hợp. Từ nhỏ, chúng ta đã học cách nhận ra giọng của cha mẹ. Giọng nói cung cấp một nguồn âm thanh quan trọng cho khản năng phán đoán của thính giác. Diễn giải một giọng nói chúng ta nhận được có thể nói rất nhiều về một ai đó. Nó có thể nói với chúng ta khoảng cách tương đối của họ, cảm xúc, và quan trọng nhất chúng ta có thể nhận ra giọng nói của người mà chúng ta quen biết. Những vị trí khác nhau và cách thức khác nhau sẽ cho ta những cảm nhận khác nhau về giọng nói.

Ngay cả bộ máy phức tạp nhất là bộ não vẫn có thể bị đánh lừa bởi giọng nói thế nên sinh trắc học giọng nói có thể bị đánh lừa. Thế nên việc sử dụng sinh trắc học giọng nói thường đặt ra nhiều nghi vấn, liệu nó có mức độ chính xác được như những phương pháp khác, và có thể phát triển trong môi trường bảo mật mạng.

Những vấn đề sẽ phải giải quyết về Sinh trắc học giọng nói: • Mô tả chung về sinh trắc học giọng nói.

• Giọng nói được thu lại như thế nào.

• Những thuật toán dùng để làm sáng tỏ giọng nói. • Sinh trắc học giọng nói có thể bị đánh lừa như thế nào?

1. Mô tả chung về sinh trắc học giọng nói

Khi nói, các từ sẽ bị chia ra thành nhiều phần riêng rẽ gọi là âm vị. Mỗi âm vị lại được chia thành pitch (độ cao thấp), cadence (nhịp), và inflection (sự chuyển điệu). Ba yếu tố này của giọng nói tạo ra giọng nói duy nhất của mỗi người. Mặc dù vậy những con người ở chung vùng miền là có chung đặc điểm về giọng nói, thế nên giọng nói của họ lại tương tự nhau. Rồi chúng ta cũng học giọng nói từ giađình, khi nghe giọng nói của người khac, vì vậy một người có thể nói được nhiều giọng khác nhau.

Giọng nói là một sinh trắc học vật lý và sinh trắc học hành vi. Nó ảnh hưởng bởi cá nhân và môi trường. Ví d ụ trẻ con khi lớn lên sẽ thay đổi giọng nói. Giọng nói cũng sẽ khác khi nói trong một hội trường lớn hoặc trong một phòng kín. Vì thế giọng nói của chúng ta không bao giờ hoàn toàn chính xác, một lần nữa nghi vấn đặt ra cho việc sử dụng sinh trắc học giọng nói cho bảo mật mạng.

2. Giọng nói được thu lạinhư thế nào?

Giọng nói có thể thu lại bằng cách sử dụng tài nguyên được thiết kê chuyên biệt như microphone gắn vào một PC hoặc thiết bị cơ bản có sẵn như điện thoại.

Sử dụng thiết bị thu tuỳ thuộc vào 2 loại chất lượng. Thứ nhất là chất lượng vật lý của thiết bị và thứ 2 là môi trường lấy mẫu.

Với một cái microphone gắn vào PC, chất lượng cao hơn và tốt hơn. Chất lượng microphone càng tăng thì chất lượng đối tượng ghi âm càng tăng cũng như khoảng cách động tăng lên. Nó cũng bao gồm công nghệ loại trừ âm nhiễu của môi trường. Với microphone đa hướng nó có thể thu tất cả âm thanh kể cả tiếng ồn, ngược lại nó chỉ thu sóng âm thanh từ khu vực âm thanh riêng biệt.

Hầu hết điện thoại được thiết lập bình thường đủ để cho một cuộc đàm thoại. Chúng có một cái microphone là ống nói, có thể cũ và công nghệ kém hơn. Nói chung thiết bị cầm tay có thể đưa vào tiếng ồn và âm thanh bị méo. Bản thân chúng không

Với của công nghệ điện thoại không dây hiện nay, nhờ sự phát triển của công nghệ giúp tăng cường âm thanh và chất lượng tín hiệu, chúng cũng được dùng để làm thiết bị cho các hệ thống sinh trắc học giọng nói

3. Các thuật toán dùng để phiên dịch giọng nói

a. Kiểm tra nhóm từ cố định (Fixed phrase verification)

User đăng kí và xác minh đề sử dụng một cụm từ cố định. Cách này rất dễ cho user đăng kí vì chỉ cần lặp lại 1 cụm từ trong quá trình đăng kí. Để xác minh thì cũng rất đơn giản là so sánh 2 sóng. Nếu chúng khớp trong 1 dung sai cho phép thì chúng sẽ cho là cùng một người. Để đối chiếu 2 sóng thì đơn giản là sử dụng kỹ thuật dynamic time warping (sai lệch thời gian động).

Dynamic time warping (sai lệch thời gian động) thường được dùng làm nền tảng cho sự so sánh. Sự diễn giải của nó được nạp vào thông tin nền. Thuật toán cố gắng giải quyết vấn đề so sánh template tham chiếu với template so sánh khi nhịp của âm vị có sự khác nhau. Nó thực hiện bằng cách sử dụng quan hệ toán học đơn giản. Bằng việc thu hẹp khoảng cách, hi vọng rằng template có thể có sự so sánh chính xác hơn. Đề làm được như vậy, mỗi tín hiệu được ánh xạ vào một ma trận khoảng cách cục bộ. Nó được hoàn thành bằng cách lấy trị tuyệt tối của 2 ô trong cùng thời gian tham chiếu. Bây giờ ma trận chứa 1 mảng quan hệ khoảng cách giữa 2 tín hiệu. Tiếp theo một ma trân chứa khoảng cách được tạo ra. Khi là như vậy thì một giá trị đại diện được đặt vào mỗi ô hình thành nên các giá trị quan hệ và giá trị thấp nhất của hàng xóm gần nhất trong ma trận khoảng cách cục bộ. Mỗi ma trận tích luỹ khoảng cách được tao ra, đường dẫn ngắn nhất được tính. Mỗi đường dẫn được xác định, nó có thể được dùng như là một hàm warp (Sai lệch) để so sánh 2 tín hiệu. Bằng cách này, giờ đây tín hiệu đồng bộ hoá về thời gian để so sánh.

b. Kiểm tra từ vựng cố định

Kiểm tra từ vựng cố định dựa vào đăng kí của user và kiểm tra nhóm từ đã biết. Nhóm từ này thường được tạo ra từ các số 0 đến 9 và ngẫu nhiên trong các từ liên quan. Để user đăng kí, mỗi từ trong bộ từ vựng được lặp lại để mẫu duy nhất của user được tạo ra. Khi đó user sẽ kiểm tra bằng bất kì từ nào trong bộ từ điển của user đó. Khi mẫu kiểm tra được so sánh với mẫu đã đăng kí và nó được khớp dựa trên việc tách mỗi từ trong bộ từ vựng liên quan với từ đăng kí mẫu. Sự khớp của mỗi từ sẽ được tổng hợp cho két quả cuối cùng.

c. Kiểm tra từ vựng linh hoạt

Dựa trên việc user có thể dùng bất kỳ từ nào trong từ vựng định trước để xác thực. Để hoàn thành nó, user được yêu cầu lặp lại một chuỗi từ (lexicon)từ vựng bao gồm tất cả âm vị trong từ vựng (lexicon). Không chỉ đưa ra toàn bộ Không những phảu được gộp vào toàn bộ xác lập của âm vị, mà âm vị còn được

kiêm tra sự liên kết với nhau. Khi user mún xác thực, họ nói bất kì từ nào trong từ vựng, từ sẽ được tách ra thành những âm vị riêng lẽ và so sánh.

d. Kiểm tra đoạn văn độc lập

Dùng bất kỳ đoạn văn nào để xác thực. Để dăng kí, user nói một đoạn bất kì. Khi muốn kiểm tra, họ sẽ phải kiểm lại với những mẫu đã được tạo. Đây là một phương thúc không được dùng trong Sinh trắc học cho bảo mật mạng.

e. Thuật toán nào là tốt nhất?

Quyết định dùng thuật toán nào là dựa vào sự tiện lợi và bảo mật. Nếu cty muốn có sự tiện lợi thì dùng cách dể đăng kí. Còn nếu muốn bảo mật tốt hơn thì cần việc đăng kí sâu hơn và từ/đoạn xác thực rộng hơn.

f. Yêu cầu của thuật toán giọng nói

Việc đăng kí phải được làm cẩn thận và lặp lại nhìu lần để có được mẫu tốt nhất

4. Sinh trắc học giọng nói bị đánh lừa như thế nào?

Các cách tấn công dùng đồ vật, tấn công thông tin, tấn công mẫu và tấn công hệ thống thay thế có thể xem lại trong phần đánh lừa hệ thống nhận dạng vân tay

Tấn công bằng giọng vật lý

Đối với những cty lựa chọn sự tiện lợi thì việc bị tấn công bằng cách ghi âm giọng hoặc nhại lại là rất lớn. Nói chung tất công bằng giọng sinh trắc học là lặp lại một cụm tĩnh để đánh lừa.

Làm giảm sự tấn công: Cách làm giảm tấn công hay nhất là dùng một bảng từ vựng đủ lớn. Từ vựng cũng nên hạn chế những từ phổ biến với những kí tự chuẩn. Hoặc có thể đưa ra những đoạn mà yêu cầu trong khoảng thời gian quy định.

V. CÔNG NGHỆ NHẬN DẠNG TRÒNG MẮT 1.Mô tả về nhận dạng mống mắt

Một phần của tài liệu Bảo mật mạng Biometric for Network Security potx (Trang 30 - 33)

Tải bản đầy đủ (PDF)

(47 trang)