Các tham số chính của mô phỏng

Một phần của tài liệu (LUẬN ÁN TIẾN SĨ) Tổng hợp dữ liệu nhằm tiết kiệm năng lượng trong mạng cảm biến không dây Luận án TS. Máy tính 94801 (Trang 68 - 82)

Tham số Giá trị

Số nút c m biến tham gia mô phỏng 100

Tọa ộ nút trong miền 100m x 100m Ngẫu nhiên Tọa ộ mục tiêu (tag) trong miền 100m x 100m Ngẫu nhiên

Số cụm tối thiểu, tối a 1 10 Số cụm mong muốn (desired) 5 Năng lư ng pin khởi tạo của nút c m biến 2 J

Năng lư ng nh n 1 bít 5 nJ Năng lư ng (sóng vô tuyến) ể gửi 1 bít 50 nJ

Hệ số khuếch ại khi truyền sóng 10pJ/bit/m2 Công suất lúc chờ (Idle), lúc ngủ (Sleep) 0 W

Tốc ộ truyền sóng 1 Mbps ch thước header (hdr_size) 25 Byte ch thước dữ liệu c m nh n (sig_size) 500 Byte

Thời gian mỗi vòng (T)/data fusion (T) 10 s (option) Số nút trong cụm mỗi (n) Ngẫu nhiên Số mức o của nút c m biến (l) 100

Ngưỡng o δ) 26 (Option) Tần số o trong 1 giây (k) 6

Mô phỏng với giao thức truy cập mạng ở tầng MAC là CSMA/CA, các nút trong cụm truy cập đƣờng truyền theo giao thức TDMA. Ph n t ch đối với 100 nút cảm biến trong thời gian mô phỏng là 480 giây, thời gian thay đổi cấu hình theo vòng 10s, mỗi vòng có 3 đến 8 cụm, các nút trong cụm phân bố ngẫu nhiên, nghĩa là có hoảng 200 cấu hình mô phỏng. Hình 2.12 là số nút tham gia khảo sát của mỗi vòng T = 10s trong thời gian 420s. Trong thời gian mô phỏng, một số nút hết năng lƣợng (trạng thái "die") sẽ không tham gia mạng. Từ giây thứ 180, bắt đầu xuất hiện nút bị "die", số lƣợng nút "die" sẽ tăng hi thời gian s dụng éo ài là xu hƣớng tất yếu.

Giá trị o ư c Time (x10s) threshold Giá trị o ư c đođooƣợcNum

Time 100 sensor node

Hình 2.13. Truyền ữ liệu của các nút cảm iến trong thời gian mô phỏng

Hình 2.14. Đồ thị truyền ữ liệu của nút số 16 giải của LEACH Hình 2.12. Số nút cảm iến tham gia mô phỏng ATTS-DF

Số nút còn hoạt động đođooƣợcNumber of

Thời gian (t x10s)

Đối với thuật toán LEACH, nút cảm biến truyền dữ liệu đến CH theo chu kỳ T = 10s. Trong mỗi chu kỳ, mỗi nút sẽ thuộc 1 cụm, 2 nút thuộc 1 cụm trong chu kỳ này có thể không cùng thuộc 1 cụm trong 1 chu kỳ khác. Tuy vậy, có thể tính tổng t ch lũy số sig_size (500 Byte/sig_size) mà nút cảm biến đã truyền trong mỗi chu kỳ và trong cả giai đoạn mô phỏng. Hình 2.13 là diễn biến việc truyền dữ liệu của 100 nút trong thời gian 480s.

Đối với mỗi nút, việc truyền nhận dữ liệu có thể đột biến tăng hoặc giảm. Tại các đỉnh của đồ thị có sự đột biến gói tin – đồng nghĩa với việc tại thời điểm đó mục tiêu có thay đổi vƣợt ngƣỡng, cần phải đo, có thể đặt ngƣỡng là số lƣợng các gói tin, đồng thời giả thiết số lƣợng (hay ung lƣợng) dữ liệu bằng nhau nếu chúng cùng có lƣợng thông tin nhƣ nhau, sự tăng các gói tin đồng nghĩa với việc tăng t nh cấp thiết phải đo lƣờng.

Ví dụ, xét giá trị đo của nút số 16 trong thời gian mô phỏng 460s của LEACH và δ = 26 sig_size để áp dụng giải pháp ATTS-DF, đồ thị truyền dữ liệu ở Hình 2.14. Giả s xét thời điểm giây thứ 120 đến giây thứ 130, là khoảng thời gian tín hiệu đo của nút 16 có độ đo vƣợt ngƣỡng δ. Tại giây thứ 120, dữ liệu đo có xu hƣớng tăng. Với k = 6 (có thể đo 6 lần trong 1 giây), trong khoảng dữ liệu tăng từ 19 đến δ = 26, số lần có thể đo đƣợc là 7s * 6 = 42 lần và m = 2*k = 12 lần.

Áp dụng với 2 trƣờng hợp: thứ nhất, ΔT = Δstart = 2s tức là nút sẽ mất 2s để khởi động và mục tiêu cũng sẽ mất 2s (tính từ điểm đo iến động) để vƣợt ngƣỡng; thứ hai, Δstart > ΔT (ví dụ ΔT = 1s) nghĩa là thời gian nút khởi động để đạt trạng thái steady state l u hơn thời gian tín hiệu đo vƣợt ngƣỡng (ví dụ là 1s). Tƣơng tự xét 2 trƣờng hợp trên đối với khoảng 180s-190s và 400s-410s. Hình 2.15 cho thấy hiệu quả đối với nút thứ 16 trong 02 trƣờng hợp trên ở chỗ giải pháp này nút sẽ hông hao ph năng lƣợng để phát tín hiệu trong thời gian

Δstart (Hình 2.15a) hoặc thời gian Δstart – ΔT (Hình 2.15b) so với việc thu phát liên tục theo chu kỳ của LEACH trong cùng khoảng thời gian xem xét.

Kết quả mô phỏng cho thấy, với δ = 26, thuật toán ATTS-DF có thể áp dụng đƣợc ở một số nút có giá trị đo lƣờng vƣợt ngƣỡng. Việc giảm δ có thể tăng số lƣợng nút tham gia thuật toán ATTS-DF. Ví dụ, khảo sát đối với 100 nút trong thời gian 480s với 48 vòng (số nút "sống" để tham gia quá trình khảo sát ở Hình 2.12), δ = 26 khi áp dụng thuật toán ATTS-DF sẽ có 55 nút áp dụng với số lƣợng 1 lần, 14 nút áp dụng 2 lần, 3 nút áp dụng 3 lần.

Hình 2.16. So sánh mức tiêu thụ năng lƣợng của các nút giữa ATTS-DF và LEACH Hiệu quả tiết kiệm năng lƣợng đối với 55 nút ở trên khi áp dụng ATTS- Hiệu quả tiết kiệm năng lƣợng đối với 55 nút ở trên khi áp dụng ATTS- DF và việc s dụng năng lƣợng của các nút đó hi áp ụng LEACH, kết quả

đến

tƣơng ứng khi áp dụng LEACH. Biểu đồ tiêu thụ năng lƣợng của các nút áp dụng thuật toán ATTS-DF và LEACH ở Hình 2.16.

2.2.5. K t uậ về ả p áp ATTS-DF

Giải pháp ATTS- F đề xuất đƣợc một phƣơng pháp th o i mục tiêu th o thời gian, th ch nghi với iến động của mục tiêu; đề xuất đƣợc hái niệm: Điểm đo iến động, trạng thái ổn định đo lƣờng, thời gian đo th ch ứng và phƣơng pháp ự đoán giá trị đo mục tiêu th o xác suất (đã iết trƣớc). Hiệu quả của ATTS-DF so với LEACH gồm: thứ nhất, đo lƣờng mục tiêu hông th o chu ỳ cố định mà có điều chỉnh th o mục tiêu đã hạn chế đƣợc ung lƣợng dữ liệu đo lƣờng giống nhau và tiết kiệm đƣợc năng lƣợng do không g i dữ liệu ƣ thừa (vì có cùng thông tin) này đến CH, BS; thứ hai, đề xuất việc chuyển trạng thái đo lƣờng của nút cảm iến từ idle (hoặc sleep) sang active đúng vào thời điểm nút cảm biến có thể đo lƣờng ở trạng thái bình thƣờng, điều này đã hạn chế tối đa thời gian nút cảm biến đƣợc bật khi chƣa đạt trạng thái đo đƣợc tốt nhất g y tổn hao năng lƣợng vô ch.

Giải thuật của ATTS-DF gồm các phép đơn giản, phù hợp với khả năng tính toán của nút cảm biến nên chỉ độ phức tạp tuyến tính O(n). Ngoài ra, giải pháp có xu hƣớng tối ƣu hóa về độ trễ và đảm bảo độ hội tụ về thời gian (đáp ứng đo lƣờng càng nhanh càng tốt).

Kết quả nghiên cứu này đã đƣợc công bố với Công trình số 7: "ATTS- DF: Adaptive tracking solution to the target for data fusion in wireless sensor networks”, Hội nghị ICSSE 2017 tại Thành phố Hồ Chí Minh, Việt Nam, tháng 7 năm 2017; đƣợc lựa chọn vào cơ sở dữ liệu Scopus, IEEE Xplore.

Trong tƣơng lai, có thể nghiên cứu thêm mối quan hệ giữa năng lƣợng của nút, giá trị đo lƣờng và ngƣỡng δ, tình huống mục tiêu thay đổi đột ngột dẫn đến kết quả đo vƣợt ngƣỡng trƣớc lúc nút đạt trạng thái ổn định.

C ươ 3. TI T KIỆM NĂNG LƯỢNG CỤM NÚT CẢM BI N BẰNG ỨNG DỤNG L THUY T TẬP THÔ

L ý thuyết tập thô - RST (Rough Set Theory) đƣợc Z zisaw Pawla đề xuất năm 1982 [64] là công cụ toán học hữu hiệu có thể phân tích dữ liệu mơ hồ hoặc không chắc chắn để hỗ trợ quyết định bằng cách có thể bỏ qua sự hông ch nh xác đó ở mức độ chấp nhận đƣợc. Các ứng dụng bởi lý thuyết tập thô chủ yếu dựa trên việc phân bổ dữ liệu bằng cách xấp xỉ giới hạn trên và giới hạn ƣới. an đầu, lý thuyết tập thô chủ yếu đƣợc s dụng trong quá trình khai phá dữ liệu, bao gồm tiền x lý số liệu, x lý số liệu.

Đầu vào cho việc ứng dụng RST là mạng cảm biến đƣợc hệ thống hóa thông tin thành một bảng, mỗi hàng là một đối tƣợng, mỗi cột là một thuộc tính. Tùy theo yêu cầu đầu ra cho mỗi loại ứng dụng để lựa chọn giải pháp phù hợp, hƣớng đến việc cân bằng giữa độ phức tạp phƣơng pháp đó và khả năng x lý của nút cảm biến, tài nguyên của mạng.

Nhƣ ph n t ch ở Mục 1.5, hƣớng nghiên cứu ứng dụng RST để tổng hợp dữ liệu chủ yếu kết hợp với trí tuệ nhân tạo (nhƣ mạng nơ-ron) để huấn luyện dữ liệu một bộ dữ liệu đầu vào th o tiêu ch ƣới dạng quy tắc/luật nào đó của phƣơng pháp đề xuất 82, 84, 85, 96, 97, 99 . Hƣớng nghiên cứu tiền x lý dữ liệu cũng ết hợp với mạng nơ-ron để xác định và x lý lỗi [83, 86, 87]. Các đề xuất nêu trên phần lớn phù hợp với các ứng dụng đặc thù với số lƣợng ít nút cảm biến cũng nhƣ năng lƣợng dự trữ của nút khá lớn để đáp ứng nhu cầu t nh toán độ phức tạp lớn. Thực tế, các đề xuất nêu trên hông đánh giá độ phức tạp tính toán của giải pháp đã đề xuất.

Chƣơng 3, nội dung luận án th o hai hƣớng nghiên cứu nêu trên nhƣng tiếp cận theo chiều thuận, tối ƣu hóa độ phức tạp tính toán bằng cách s dụng tối đa các phép t nh toán cổ điển của RST. an đầu, mạng cảm biến

đƣợc hệ thống hóa thành bảng thông tin có số hàng là số nút cảm biến, số cột là các thuộc t nh điều kiện theo thực tế của mạng và yêu cầu của ứng dụng. Quy trình ứng dụng RTS để tổng hợp dữ liệu với đầu ra là tập luật để CH đƣa ra quyết định về dữ liệu đƣợc trình bày ở Mục 3.1. Quy trình ứng dụng RST để tiền x lý dữ liệu thô mà nút trong cụm thu đƣợc để tạo bộ dữ liệu đầu vào CH thực hiện tổng hợp, nội ung này đƣợc trình bày ở Mục 3.2.

3.1. Ứ ụ L t u t tập t tạ CH đ t ợp u

Sự phù h p ể chọn RST làm gi i pháp tổng h p dữ liệu nhiều c m biến thể hiện ở những quan iểm sau:

 Tính chất rời rạc và liên tục của dữ liệu đo lƣờng của nút cảm biến: Giao thức IEEE 802.15.4 khi áp dụng cho mạng WSN sẽ điều khiển việc lấy dữ liệu theo chu kỳ thức-ngủ (active-sleep) nên dữ liệu CH thu đƣợc từ nút cảm biến sẽ rời rạc. Khi nút cảm biến ở trạng thái thức (active), dữ liệu đo là liên tục (nằm trong khoảng giá trị đo của nhà sản xuất), việc x lý và truyền dữ liệu đó đến nút cảm biến tiếp theo trên tuyến thì dữ liệu đó là liên tục.

 Hỗ trợ để x lý mô tả không chắc chắn: Khi sensor cảm nhận về đối tƣợng, tín hiệu có thể bị nhiễu dẫn đến tính đúng đắn của dữ liệu truyền đi hông đƣợc bảo toàn. Dựa trên dữ liệu thuộc tính, CH có thể xác định lại sự đúng đắn của dữ liệu cảm nhận bằng cách loại bỏ thông tin nhiễu, giữ lại thông tin hữu ích, ít bị nhiễu phục vụ tổng hợp dữ liệu.

 Hỗ trợ x lý vấn đề mất dữ liệu: Dữ liệu thu thập đƣợc từ các nút cảm biến khi truyền đến CH có thể hông đầy đủ, nghĩa là CH không nhận đủ dữ liệu từ một hoặc nhiều nút trong nhóm để làm dữ kiện cho quá trình DF. Tình huống để mất dữ liệu có thể là: Lúc cần cảm nhận thì nút cảm biến đang trạng thái ngủ, lúc đang truyền dữ liệu đến CH thì nút cảm biến hết năng lƣợng, đang truyền thì đến chu kỳ ngủ của nút cảm biến, gói tin bị lỗi…

 Hỗ trợ để x lý vấn đề ƣ thừa dữ liệu: Đ y là một vấn đề rất quan trọng trong bài toán tổng hợp dữ liệu. Khi các nút cảm biến cùng cảm nhận về một đối tƣợng và cùng truyền một loại thông tin đó trực tiếp đến BS hoặc qua nút cảm biến trung gian (là CH nếu mạng có phân cụm) để truyền đến BS thì việc loại bỏ các dữ liệu ƣ thừa này là điều rất cần thiết.

 RST hỗ trợ tổng hợp dữ liệu đƣợc ch nh xác hơn thông qua ngữ nghĩa, "tri thức" của thông tin chứ không thông qua x lý trực tiếp toàn bộ dữ liệu "kiến thức" của thông tin. Trên thực thế, rất hó để có thể tổng hợp đƣợc dữ liệu đúng tuyệt đối (100%) với tình huống diễn ra ở thực địa o đặc tính phần cứng của s nsor hó định lƣợng chính xác giá trị của đại lƣợng đặc trƣng cho sự kiện cần giám sát. o đó, đôi hi phải t nh định lƣợng thông qua ngữ nghĩa của dữ liệu thay vì định lƣợng giá trị đo của từng loại tham số cụ thể.

Tóm lại, s dụng tổng hợp dữ liệu để tăng độ chính xác của kết luận đồng thời đạt hiệu quả về năng lƣợng. Thực tế trong điều kiện l tƣởng, chỉ cần một nút cảm biến là đủ để có kết luận chính xác nhất, tuy nhiên điều này bị ràng buộc bởi các công nghệ phần cứng, t nh năng đƣợc tích hợp vào nút cảm biến của nhà sản xuất. Tổng hợp dữ liệu có nghĩa trong trƣờng hợp muốn tăng độ ch nh xác hơn hi suy đoán hông chắc chắn và ứng dụng RST trong vấn đề tổng hợp dữ liệu của WSNs là một lựa chọn phù hợp.

3.1.1. M tả t á DF ều út cả

Các nút cảm biến (S0, S1,... S7) theo dõi sự kiện diễn ra ở mục tiêu (target) và truyền dữ liệu cảm nhận sự kiện đó đến một nút cụm trƣởng - CH có trách nhiệm DF. Nút CH áp dụng thuật toán tiền x lý (data preprocessing) để giao tiếp, tách các thuộc tính của dữ liệu (feature extraction), sau đó áp ụng RST để tổng hợp dữ liệu (data fusion) và quyết định. Nhƣ vậy, đầu vào của CH là dữ liệu cảm biến về mục tiêu và thông tin của các nút cảm biến trong nhóm;

đầu ra là quyết định lựa chọn nút cảm biến và nội dung dữ liệu cảm biến để truyền tiếp. ài toán đƣợc mô tả ở Hình 3.1.

3.1.2. Qu tr ứ ụ RST đ t ợp u

Với WSNs, nhiều lớp ài toán đã đƣợc đặt ra nhƣ: điều khiển chu kỳ cảm nhận dữ liệu, lấy mẫu cảm biến, phân nhóm, chọn nút cụm trƣởng, định tuyến, tổng hợp... Không mất tính tổng quát có thể giả s những ài toán đó đã đƣợc giải quyết. Riêng bài toán tổng hợp dữ liệu, mục tiêu chính chỉ tập trung vào vấn đề (điều khiển) tính toán trên nút CH. Nhƣ vậy, ứng dụng lý thuyết tập thô để tổng hợp dữ liệu nhiều cảm biến sẽ đƣợc thực hiện ở Lớp 3.

Hình 3.1.Mô tả bài toán tổng hợp ữ liệu có s dụng RST.

Đề xuất quy trình ứng dụng RST để tổng hợp dữ liệu nhƣ sau:

ƣớc 1: Tiền x lý, tách thuộc tính từng nút cảm biến (của dữ liệu cảm nhận và của nút cảm biến), giả s đƣợc m thuộc tính;

ƣớc 2: Lập bảng, nếu có n nút cảm biến thì bảng sẽ có n hàng, (m + 1) cột; ƣớc 3: Tìm lớp con tƣơng đƣơng th o giá trị thuộc tính quyết định;

ƣớc 4: Tìm tập các lớp con tƣơng đƣơng của các tập con thuộc t nh điều kiện; ƣớc 5: Tìm tập các tập thuộc tính rút gọn; Multi - Sensor Target (mục tiêu) Tiền x lý Tách thuộc tính CH Tổng hợp dữ liệu Quyết định S1 S2 S3 S4 S5 S6 S7 S0 Công đoạn ứng dụng RST để tổng hợp dữ liệu nhiều cả m biến tại nút CH

Lớp 2

Lớp 1 Lớp 3

ƣớc 6: Tìm tập thuộc tính lõi;

ƣớc 7: Xác định các luật quyết định, độ chắc chắn của mỗi luật để làm cơ sở tri thức; ƣớc 8: Quyết định.

Đề xuất mô hình xử lý dữ liệu tại CH nhƣ sau (x m Hình 3.2):

Hình 3.2. Mô hình x lý, tổng hợp dữ liệu tại nút CH

Giải thích:

+ Tiếp nh n dữ liệu c m biến: Nút CH nhận dữ liệu cảm biến của tất cả

các nút trong cụm g i về.

+ Tách thuộc tính từng nút c m biến: Tín hiệu cảm nhận và thông tin về

nút sẽ đƣợc lƣợng hóa thành các mức giá trị. Các thuộc tính này phù hợp với mục đ ch, phƣơng pháp đề xuất của từng ài toán và đƣợc định nghĩa trƣớc.

Một phần của tài liệu (LUẬN ÁN TIẾN SĨ) Tổng hợp dữ liệu nhằm tiết kiệm năng lượng trong mạng cảm biến không dây Luận án TS. Máy tính 94801 (Trang 68 - 82)

Tải bản đầy đủ (PDF)

(142 trang)