Giới thiệu sơ lược về phương pháp phát hiện khuôn mặt sử dụng HOG sẽ

Một phần của tài liệu (LUẬN văn THẠC sĩ) nghiên cứu về mạng neural convolutional, áp dụng vào bài toán nhận dạng đối tượng trong lĩnh vực thị giác máy tính (Trang 72 - 73)

3.3 Áp dụng mạng nơron tích chập để xây dựng hệ thống nhận diện

3.3.3 Giới thiệu sơ lược về phương pháp phát hiện khuôn mặt sử dụng HOG sẽ

được dùng để so sánh

Tổng quan về các bước:

Bước 1: Tiền xử lý: từ hình ảnh gốc, ta sử dụng phương pháp phát hiện khn mặt và trích xuất khn mặt khỏi bức hình

Hình 3.20: Khn mặt được sử dụng để nhận dạng

Hình 3.21: Khn mặt được trích xuất

Bước 2: Lọc theo bộ lọc Gabor: Bộ lọc Gabor phân tích các thay đổi về ánh sáng và kết cấu để phân tích hình ảnh: thay đổi cạnh và kết cấu trong một hình ảnh làm nổi bật các đặc tính của bức ảnh. Điều này giúp loại bỏ chi tiết không mong muốn, do đó các chi tiết mà chúng ta thực sự mong muốn như các đường viền của môi, mắt, lông mày và vị trí của chúng trong bức ảnh sẽ rõ ràng hơn. Bộ lọc Gabor được sử dụng để phóng đại hướng của hình ảnh khn mặt, ví dụ Gabor biến nụ cười thành hình tam giác như trong hình minh họa. Các cạnh được phóng đại và sắc nét hơn, các đặc điểm khuôn mặt trở nên rõ ràng và đơn giản hơn so với hình ảnh gốc, do đó nó tăng cường độ chính xác cho HOG

HOG lấy hình ảnh được chuyển đổi từ Bộ lọc Gabor và tìm hướng nổi bật nhất cho từng nhóm điểm ảnh, được tính tốn theo ơ. HOG tính tốn hướng dốc và cường độ của hình ảnh Gabor để cung cấp một mơ tả tốn học rõ ràng về hình ảnh, tạo ra một véc tơ để mơ tả hình ảnh, phục vụ cho việc nhận diện khn mặt.

Hình 3.23: Các đặc trưng được trích xuất bằng HOG

Bước 3: Phân loại: véc tơ lấy được từ HOG sẽ được sử dụng theo SVM để tính tốn và phân tích, lưu trữ, và sử dụng để tính tốn kết phân loại khn mặt

Một phần của tài liệu (LUẬN văn THẠC sĩ) nghiên cứu về mạng neural convolutional, áp dụng vào bài toán nhận dạng đối tượng trong lĩnh vực thị giác máy tính (Trang 72 - 73)

Tải bản đầy đủ (PDF)

(86 trang)