Một ví dụ của lớp được kết nối đầy đủ

Một phần của tài liệu (LUẬN văn THẠC sĩ) nghiên cứu về mạng neural convolutional, áp dụng vào bài toán nhận dạng đối tượng trong lĩnh vực thị giác máy tính (Trang 39 - 40)

1.3.2.6 Mơ hình q khớp

Cấu trúc của một mạng CNN rất lớn, trong mạng có rất nhiều nơ ron, kết nối, cũng như có rất nhiều trọng số cần thiết để huấn luyện. Nhưng lượng dữ liệu huấn luyện thường không đủ để huấn luyện hoàn thiện cho một mạng nơ ron lớn. Nó có thể gây ra một số vấn đề về quá khớp, khiến cho khi huấn luyện có kết quả rất cao, nhưng áp dụng thực tế gây ra sai số lớn. Có một số kỹ thuật để cải thiện điều này.

Hình 1.25: Ví dụ về trường hợp quá khớp (bên trái) và trường hợp chuẩn (bên phải)

Một trong những phương pháp đó là là giảm trọng số trong lúc huấn luyện. Dropout là một trong những kỹ thuật nổi tiếng và khá phổ biển để khắc phục vấn đề này. Dropout đặt đầu ra của mỗi nơ ron ẩn thành 0 với xác suất 0,5. Vì vậy, các nơ ron này sẽ khơng đóng góp vào lan truyền tiến, do đó và sẽ khơng tham gia vào lan truyền ngược. Thông thường, đối với các đầu vào khác nhau, mạng nơ ron xử lý dropout theo một cấu trúc khác nhau.

Một cách khác để cải thiện việc việc quá khớp là tăng lượng dữ liệu. Chúng ta có thể phản chiếu hình ảnh, lộn ngược hình ảnh, lấy mẫu hình ảnh, v.v. Những cách này sẽ tăng số lượng dữ liệu huấn luyện. Vì vậy, nó có khả năng ngăn chặn q khớp. Với ví dụ thực tế, trong một vài dự án, các bức ảnh được sử dụng để huấn luyện đã được xử lý thêm

bước xoay, với mỗi lần từ 15 đến 20 độ cũng như áp dụng thêm phương pháp phản chiếu bức ảnh. Kết quả, hệ thống AI đã phát hiện cải thiện đáng kể việc nhận diện.

1.3.2.7. Một số mạng tích chập nổi tiếng

Có một số kiến trúc mạng nơ ron tích chập nổi tiếng. Một số thử nghiệm cho thấy chúng có hiệu suất tốt hơn. Vì vậy, đơi khi nhiều người sử dụng mạng được thiết kế sẵn thay vì tự thiết kế mạng. Ở các phần sau luận văn sẽ giới thiệu một vài mạng tích chập nổi tiếng và thông dụng hiện nay.

AlexNet

Một phần của tài liệu (LUẬN văn THẠC sĩ) nghiên cứu về mạng neural convolutional, áp dụng vào bài toán nhận dạng đối tượng trong lĩnh vực thị giác máy tính (Trang 39 - 40)

Tải bản đầy đủ (PDF)

(86 trang)