Thống kê các điểm cháy tại Việt Nam

Một phần của tài liệu NGHIÊN cứu và ĐÁNH GIÁ (Trang 90 - 144)

180 223 125 83 0.689 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0 50 100 150 200 250 AOD Số vụ ch áy Đài Loan

Số vụ cháy AOD AERONET AOD (MODIS,VIIRS)

34883 1788 1896 0.622 0.737 0.550 0.878 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 5000 10000 15000 20000 25000 30000 35000 40000 AOD Số vụ ch áy Việt Nam

Cháy rừng xảy ra do tác động của nhiều nguyên nhân, các nhân tố ảnh hưởng này bao gồm các yếu tố tự nhiên, điều kiện kinh tế xã hội và các chính sách liên quan như công tác quản lý, điều hành, dự báo và phòng ngừa cháy rừng. Thứ nhất là các yếu tố tự nhiên ảnh hưởng tới cháy rừng. Các nhân tố này được hiểu là điều kiện thời tiết và các nhân tố khí tượng, đây là các tác nhân cho sự phát sinh, phát triển của một đám cháy rừng. Các nhân tố này bao gồm: Nhiệt độ, độ ẩm không khí, độ ẩm vật liệu cháy và độ ẩm bề mặt đất, gió. Gió là nhân tố ảnh hưởng rất nhiều đến cháy rừng, gió thúc đẩy nhanh quá trình làm khô vật liệu cháy, làm bùng phát ngọn lửa và đẩy nhanh tốc độ đám cháy. Gió mang theo tàn lửa gây ra các đám cháy khác, làm đám cháy phát triển nhanh và lan rộng. Ngoài ra, các yếu tố tự nhiên còn bao gồm điều kiện địa hình, kiểu rừng và loại thực bì, và các nguyên nhân khác. Các yếu tố này đều có liên quan trực tiếp hoặc gián tiếp tới cháy và nguy cơ cháy rừng. Thứ hai là ảnh hưởng bắt nguồn từ các hoạt động xã hội và các hoạt động sản xuất của con người. Đốt rừng làm nương rẫy ở miền núi và đốt rơm rạ ở đồng ruộng gây cháy rừng, vào rừng khai thác gỗ là nguyên nhân gây ra cháy tại nhiều khu vực.

KẾT LUẬN

Luận văn sử dụng chuỗi số liệu độ dày quang học sol khí thu được từ ảnh vệ tinh MODIS và ảnh vệ tinh VIIRS để đánh giá dựa trên các số liệu tại trạm quan trắc mặt đất AERONET trong khu vực Đông Nam Á, Đài Loan và Hồng Kông. Các sản phẩm sol khí của MODIS 3 km và VIIRS 6 km được sử dụng. MODIS cung cấp dữ liệu ảnh sol khí được tải về tại LAADS DAAC và dữ liệu các vụ cháy xảy ra. Ảnh vệ tinh VIIRS được tải về tại NOAA-CLASS. Ảnh vệ tinh sau khi tải về đi qua một bước tiền xử lý để trích xuất dữ liệu AOD tại 550nm bằng các công cụ và thư viện mã nguồn mở. Dữ liệu quan trắc mặt đất được lấy từ AERONET và dữ liệu các điểm cháy từ MODIS và được ghi vào trong cơ sở dữ liệu. Quá trình tiền xử lý ảnh vệ tinh và trích xuất dữ liệu sử dụng mã nguồn có sẵn của trung tâm FIMO. Chương trình ban đầu chứa các module thu thập và tải dữ liệu, xử lý và tạo ra các sản phẩm PNG, Geotiff. Quá trình thực nghiệm đã cải tiến thêm các module về xử lý dữ liệu, tích hợp AOD từ vệ tinh và AERONET để lưu vào cơ sở dữ liệu, tiền xử lý dữ liệu các điểm cháy, nội suy dữ liệu AERONET AOD từ 500nm sang 550nm… Các chương trình cũng đã được tích hợp thêm giao diện và đưa và đồng nhất về một ngôn ngữ lập trình chung. Song song với đó, cơ sở dữ liệu đã được cải tiến để phù hợp với quá trình thực nghiệm.

Dữ liệu trong luận văn được tích hợp dựa trên không gian và thời gian. Các mẫu quan sát được xác định theo phạm vi bán kính R tính từ vị trí đặt trạm quan trắc. Dữ liệu AOD tại trạm mặt đất được lấy theo khoảng thời gian dao động T trước và sau thời gian vệ tinh bay qua. Dữ liệu sau khi tích hợp được đánh giá dựa trên thông số tương quan nhằm xác định bán kính và thời gian có sự tương đồng tốt nhất. Luận văn sử đụng dữ liệu AOD từ vệ tinh tại 550nm, tuy nhiên tại AERONET không có dữ liệu AOD sẵn cho bước sóng này. Vì vậy giá trị AOD 550nm cho các trạm AERONET sẽ được thực hiện nội suy từ giá trị AOD 500nm dựa trên thông số Angstrom. Dữ liêu AOD từ MODIS và VIIRS được đánh giá và so sánh với dữ liệu AOD từ AERONET sau khi tích hợp.

Độ dày quang học trung bình tại toàn khu vực thu được từ MODIS và VIIRS và giá trị thu được tại các trạm quan trắc AERONET có sự tương quan lẫn nhau. Hệ số tương quan giữa MODIS, VIIRS và AERONET trong cả khu vực lần lượt là 0.81 và 0.68. Độ dày quang học sol khí trung bình của MODIS là 0.504.Còn với VIIRS, AOD trung bình là 0.395 thấp hơn nhiều so với MODIS AOD. Sai số trung bình của MODIS AOD và AERONET AOD lớn hơn 0.087 chiếm 40,68% trên tổng số mẫu quan sát. Sai số trung bình của VIIRS AOD và AERONET AOD lớn hơn 0.036 chiếm 48.76%. Có thể nói số liệu VIIRS AOD chính xác hơn nhưng độ tương quang về dữ liệu so với đo tại các trạm quan trắc mặt đất còn thấp.

AOD thể hiện giá trị cao nhất tại Việt Nam (0.774 cho MODIS AOD và 0.643 cho VIIRS AOD ) ở khu vực thành thị, Lào (0.861 cho MODIS AOD và 0.641 cho VIIRS AOD) và thấp nhất ở Philipines. Các quốc gia trong khu vực hầu hết đều là các nước đang phát triển với nền kinh tế nông nghiệp. Là nơi cung cấp nguyên liệu và nhân công giá rẻ, khu vực Đông Nam Á đang ngày càng tập trung nhiều các khu công nghiệp, các nhà máy kéo theo tình trạng đô thị hoá, tắc nghẽn giao thông, ô nhiễm do khói bụi, rác thải, khai thác và đốt phá rừng phục vụ nông nghiệp và công nghiệp… Đồng thời, do địa hình nằm trong khu vực hay có núi lửa phun trào cũng như thường xuyên phải gánh chịu các trận bão nhiệt đới từ biển làm cho khu vực trở thành điểm nóng về ô nhiễm không khí. Riêng với Philippines, quốc gia này được xếp vào mức ô nhiễm khá nặng ở khu vực Đông Nam Á. Tuy nhiên AOD tại đây lại khá thấp và sai số vô cùng cao. Do địa hình và tính chất các trạm gần biển, nên khi đánh giá tại Philipines, cần cân nhắc thêm việc đánh giá các tập dữ liệu AOD khác như số liệu AOD cho riêng biển, số liệu AOD cho riêng đất liền để cho kết luận chính xác hơn về sản phẩm.

Kết hợp số liệu AOD thu được từ MODIS, VIIRS, AERONET cùng với số liệu về các vụ cháy từ MODIS, nhận thấy các giá trị AOD được biến đổi tỉ lệ thuận với tần suất xảy ra các vụ cháy. Cả số vụ cháy và AOD đều đạt cao điểm nhất vào tháng 3 và tháng 10. Đây là các tháng trọng điểm đốt cây nông nghiệp để bắt đầu mùa canh tác mới. Đặc biệt nghiêm trọng tại tháng 10, cháy rừng khiến cho khói bụi sương mù bao phủ toàn bộ Đông Nam Á, dẫn đến tình trạng AOD tăng cao ở nhiều nước trong khu vực. Có thể sử dụng các sản phẩm sol khí từ MODIS và VIIRS để áp dụng vào các nghiên cứu và ứng dụng liên quan đến giám sát cháy trong khu vực.

Việc đánh giá và phân tích sản phẩm VIIRS và MODIS trên khu vực Đông Nam Á, Đài Loan, Hồng Kông đã làm nổi bật lên các đặc điểm và khả năng áp dụng các sản phẩm này trong điều kiện khí hậu tại từng quốc gia, vùng lãnh thổ khác nhau. Qua quá trình nghiên cứu, bản thân tôi đã tích lũy được nhiều kiến thức về ảnh viễn thám. Hiểu được các công cụ sử dụng để trích xuất và tiền xử lý dữ liệu như HDFView, GDAL, Python, cơ sở dữ liệu PosgreSQL…Dựa trên các hiểu biết đó, tôi đã thực hiện đánh giá độ dày quang học sol khí từ ảnh vệ tinh MODIS và VIIRS trong khu vực nghiên cứu. Trong tương lai, việc đánh giá và phân tích các sản phẩm sol khí từ các vệ tinh khác sẽ được tiến hành để cho thấy một bức tranh toàn cảnh về AOD trong khu vực Đông Nam Á. Làm tiền đề cho việc áp dụng sản phẩm sol khí từ vệ tinh vào nghiên cứu biến đổi khí hậu, giám sát ô nhiễm và các ứng dụng khác. Từ đó làm cơ sở để tiếp tục nghiên cứu, tích hợp và ứng dụng dữ liệu độ dày quang học sol khí của ảnh vệ tinh từ nhiều nguồn khác nhau.

TÀI LIỆU THAM KHẢO

Tiếng Việt

[1] Phạm Xuân Thành, Nguyễn Xuân Anh, Đỗ Ngọc Thuý, Hoàng Hải Sơn, Nguyễn Xuân Sơn, Âu Duy Tuấn và Phạm Lê Khương, “Đặc điểm độ dày quang học sol khí từ số liệu các trạm AERONET Việt Nam và so sánh chúng với số liệu MODIS,” Tạp chí Các Khoa học về Trái Đất, 37 (3), 252-263, 2015.

[2] BỘ TÀI NGUYÊN VÀ MÔI TRƯỜNG, “Báo cáo hiện trạng môi trường quốc gia 2016,” BỘ TÀI NGUYÊN VÀ MÔI TRƯỜNG, 2017.

[3] Chính phủ Việt Nam, “Nghị định số 42/2009/NĐ-CP của Chính phủ : Về việc phân loại đô thị,” 2009.

[4] Nguyễn Ngọc Bích Phương, Tổng quan về sol khí và mô hình Regcm, Luận văn Thạc sĩ. Đại học Khoa học Tự Nhiên.

[5] PGS. TS. Nguyễn Khắc Thời, Giáo trình viễn thám, Hà Nội: Khoa Tài nguyên môi trường, trường Đại Học Nông Nghiệp Hà Nội.

[6] PGS.TS Đinh Xuân Thắng, Giáo trình ô nhiễm không khí, TP. Hồ Chí Minh: NHÀ XUẤT BẢN ĐẠI HỌC QUỐC GIA TP HỒ CHÍ MINH, 2007.

[7] Sách giáo khoa lớp 8, “Đặc điểm tự nhiên của khu vực Đông Nam Á,”.

[8] Tổng cục nông nghiệp, “Tài nguyên rừng và nguyên nhân suy thoái rừng trên thế giới,”.

[9] idialy, “Tập bản đồ thế giới và các châu lục - Đông Nam Á,” 2015.

Tiếng Anh

[10] Pawan Gupta, Sundar A. Christopher, Jun Wang, Robert Gehrig, Yc Lee and Naresh Kumar, "Satellite remote sensing of particulate matter and air quality assessment over global cities," ScienceDirect, 2006.

[11] EPA.GOV, "Particulate Matter (PM) Basics," [Online]. Available: https://www.epa.gov/pm-pollution/particulate-matter-pm-basics.

[12] YANG LIU, JEREMY A. SARNAT, VASU KILARU, DANIEL J. JACOB and PETROS KOUTRAKIS, "Estimating Ground-Level PM2.5 in the Eastern United States Using Satellite Remote Sensing," Environmental Science and Technology 39(9): 3269-3278.

[13] Thi Nhat Thanh Nguyen, Viet Cuong Ta, Thanh Ha Le and Simone Mantovani, "Particulate Matter Concentration Estimation from Satellite Aerosol and Meteorological Parameters: Data-Driven Approaches," Advances in Intelligent Systems and Computing, vol 244, 2014.

[14] "Modis Algorithms," [Online]. Available: http://www.globalimaging.com/modis- algorithms.html.

[15] "LAAD DAAC," [Online]. Available: https://ladsweb.modaps.eosdis.nasa.gov. [16] MODIS, "Dark Target," [Online]. Available: https://darktarget.gsfc.nasa.gov. [17] M. A. FIRES, "MCD14ML," [Online]. Available: ftp://fuoco.geog.umd.edu. [18] "NOAA-CLASS," [Online]. Available: https://www.class.ngdc.noaa.gov.

[19] Joint Polar Satellite System (JPSS) VIIRS Aerosol Optical Thickness (AOD) and Particle Size Parameter Algorithm Theoretical Basis Document (ATBD), 2015. [20] "AERONET," [Online]. Available: https://aeronet.gsfc.nasa.gov.

[21] Charles Ichoku, D. Allen Chu, Shana Mattoo, Yoram J. Kaufman, Lorraine A. Remer, Didier Tanre ́, Ilya Slutsker and Brent N. Holben, "A spatio-temporal approach for global validation and analysis of MODIS aerosol products," GEOPHYSICAL RESEARCH LETTERS, VOL. 29, NO. 12, 10.1029/2001GL013206, 2002.

[22] D. A. Chu, Y. J. Kaufman, C. Ichoku, L. A. Remer, D. Tanre ́ and B. N Holben, "Validation of MODIS aerosol optical depth retrieval over land," GEOPHYSICAL RESEARCH LETTER, VOL. 29, NO. 12, 10.1029/2001GL013205, 2002.

[23] S. N. Tripathi, Sagnik Dey, A. Chandel, S. Srivastava, Ramesh P. Singh and B. N. Holben, "Comparison of MODIS and AERONET derived aerosol optical depth over the Ganga Basin, India. Annales Geophysicae," Annales Geophysicae, 23, 1093–1101, 2005.

[24] Man Sing Wong, Muhammad I. Shahzad, Janet E. Nichol, Kwon Ho Lee and P.W. Chan, "Validation of MODIS, MISR, OMI, and CALIPSO aerosol optical thickness using ground-based sunphotometers in Hong Kong," International Journal of Remote Sensing Vol. 34, No. 3, 10 February 2013, 897–918 , 2013. [25] Q. Xiao, H. Zhang, M. Choi, S. Li, S. Kondragunta, J. Kim, B. Holben, R. C. Levy

and Y. Liu, "Evaluation of VIIRS, GOCI, and MODIS Collection 6 AOD retrievals against ground sunphotometer observations over East Asia," Atmos. Chem. Phys., 16, 1255–1269, 2016.

[26] V. T. Tran, H. V. Pham, T. X. Pham, H. Q. Bui, A. X. Nguyen, T. T. Nguyen and T. T. Nguyen, "Satellite Aerosol Optical Depth over Vietnam: an analysis from VIIRS and CALIOP aerosol products," Land Atmospheric Interactions in Asia. Springer Book, 2016.

[27] "AERONET," [Online]. Available: https://aeronet.gsfc.nasa.gov.

[28] M. Peng, R. C. Schnell, T. Conway, C.-T. Chang, K.-S. Lin, Y. I. Tsai, W.-J. Lee, S.-C. Chang, J.-J. Liu, W.-L. Chiang, S.-. J. Huang, T.-H. Lin and G.-R. Liu, "An overview of regional experiments on biomass burning aerosols and related pollutants in Southeast Asia: From BASE-ASIA and the Dongsha Experiment to 7-SEAS," Atmospheric Environment 78 (2013) 1-19, 2013.

[29] NOAA, Suomi National Polar-Orbiting Partnership (NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) Aerosol Products Users Guide.

[30] C. Seaman, "Beginner’s Guide to VIIRS Imagery Data," CIRA/Colorado State University, 2013.

[31] H. L. Thanh, N. T. N. Thanh , L. Kristofer , I. Shriram , . P. V. Krishna and J. Chris , "Vegetation fires and air pollution in Vietnam," Environmental Pollution, 2014.

[32] T.F. Eck, B.N. Holben, J. Boonjawat, A. Snidvongs , H.V. Le, J.S. Schafer, T. Kaewkonga, R. Mongkolnavin, J.S. Reid, O. Dubovik and A. Smirnov, "Aerosol Optical Properties in Southeast Asia From AERONET Observations," AERONET.

[33] Krishna Prasad Vadrevu, Kristofer Lasko, Chris Justice and Louis Giglio, "Vegetation fires, absorbing aerosols and smoke plume characteristics in diverse biomass burning regions of Asia," Environmental Research Letters , Volume 10, Number 10 , 2015.

[34] Gumley and Liam, "Introduction to MODIS," Space Science and Engineering Center University of Wisconsin-Madison.

[35] K. Y. J, D. Tanre and O. Boucher, "A satellite view of aerosols in the climate system".

[36] R. C. Levy, S. Mattoo, L. A. Munchak, L. A. Remer, A. M. Sayer, F. Patadia and N. C. Hsu, "The Collection 6 MODIS aerosol products over land and ocean. Atmospheric Measurement Techniques".

[37] S. More, P. P. Kumar, P. Gupta, P. Devara and G. Aher, "Comparison of Aerosol Products Retrieved from AERONET, MICROTOPS and MODIS over a Tropical Urban City, Pune, India. Aerosol and Air Quality Research".

[38] L. A. Remer, S. Mattoo, R. C. Levy and L. A. Munchak, "MODIS 3 km aerosol product: algorithm and global perspective," [Online]. Available: https://www.atmos-meas-tech.net/6/1829/2013/amt-6-1829-2013.pdf.

[39] R. C. Levy, L. A. Remer, D. Tanré́, S. Mattoo and Y. J. Kaufman, ALGORITHM FOR REMOTE SENSING OF TROPOSPHERIC AEROSOL OVER DARK TARGETS FROM MODIS Collections 005 and 051, https://modis- images.gsfc.nasa.gov/_docs/ATBD_MOD04_C005_rev2.pdf.

[40] "MODIS," [Online]. Available: https://modis.gsfc.nasa.gov.

PHỤ LỤC 1: THỐNG KÊ DỮ LIỆU CÁC TRẠM AERONET Quốc Quốc

gia Khu vực

Tên trạm

AERONET Đặc điểm Vị trí (kinh

độ, vĩ độ) Năm Số dòng dữ liệu Tháng có dữ liệu Tháng không có dữ liệu Đài

Loan Miền nam

Chen-Kung_Univ Thành thị (120.216667,2 3) 2012 808 01,02,03,05,06,07 04,08,09,10,11,12 2013 3296 02,03,04,05,06,07,08,09,10, 11,12 1 2014 3537 01,02,03,04,05,06,07,08,09, 10,11,12 2015 2102 01,02,03,04,05,06,07,08,10, 11 09,12 2016 1047 01,02,03,04,05,06 07,08,09,10,11,12

Lulin Nông thôn (120.873611,2

3.468611) 2012 2244 03,04,05,06,07,08,09,10,11, 12 01,02 2013 1665 01,02,03,04,05,09,10,11,12 06,07,08 2014 2843 01,02,03,04,06,07,09,10,11, 12 05,08 2015 2167 01,02,03,04,05,06,07,08,09, 10,11,12 2016 6 1 02,03,04,05,06,07,08, 09,10,11,12

Quốc

gia Khu vực

Tên trạm

AERONET Đặc điểm Vị trí (kinh

độ, vĩ độ) Năm Số dòng dữ liệu Tháng có dữ liệu Tháng không có dữ liệu Miền trung Douliu Thành thị (120.5448,23. 7117) 2012 2013 2014 2015 691 09,10,11 01,02,03,04,05,06,07, 08,12 2016 Miền bắc

EPA-NCU Nông thôn (121.185483,2 4.967533) 2012 842 02,03,04,05,06,07,08,09,10 01,11,12 2013 1037 02,03,04,05,06,07,09,10,11, 12 01,08 2014 4522 01,02,03,04,05,06,07,08,09, 10,11,12 2015 2271 01,02,03,04,05,06,07,08,09, 10,11,12 2016 1298 01,02,03,04,05,06,07 08,09,10,11,12 Taipei_CWB Thành thị (121.5,25.03) 2012 2587 01,02,03,04,05,06,07,08,09, 10,11,12 2013 1014 01,02,03,04,05,10,11,12 06,07,08,09

Quốc

gia Khu vực

Tên trạm

AERONET Đặc điểm Vị trí (kinh

độ, vĩ độ) Năm Số dòng dữ liệu Tháng có dữ liệu Tháng không có dữ liệu 2014 2101 01,02,03,04,05,08,09,10,11, 12 06,07 2015 2106 01,02,03,04,05,06,07,08,09, 10,11,12 2016 790 01,02,03,04,05 06,07,08,09,10,11,12 Indonesi a Java Bandung Thành thị (107.61,- 6.888417) 2012 1988 01,02,04,06,07,08,09,10,11, 12 03,05 2013 1303 01,02,03,04,05,06,07,08,09 10,11,12 2014 2247 05,06,07,08,09,10,11,12 01,02,03,04 2015 1532 04,05,06,07,08,10 01,02,03,09,11,12 2016 273 01,02,03,04,05 06,07,08,09,10,11,12 Sumatra Jambi Thành thị (103.641563,- 1.632445) 2012 1313 07,08,09,10,11,12 01,02,03,04,05,06 2013 2644 01,02,03,04,05,06,07,08,09, 10,11 12 2014 1188 01,03,04,05,06,07,08,09,10, 11,12 2 2015 854 01,02,03,04,05,06,07,08 09,10,11,12

Quốc

gia Khu vực

Tên trạm

AERONET Đặc điểm Vị trí (kinh

độ, vĩ độ) Năm Số dòng dữ liệu Tháng có dữ liệu Tháng không có dữ liệu 2016

Sulawesi Makassar Nông thôn (119.57227,- 4.99768) 2012 2013 2014 2015 4026 07,08,09,10,11,12 01,02,03,04,05,06 2016 133 1 02,03,04,05,06,07,08, 09,10,11,12 Kalimant an

Palangkaraya Nông thôn (113.94624,- 2.22799) 2012 2528 07,08,09,10,11,12 01,02,03,04,05,06 2013 2434 01,02,03,04,05,06,07,08,09, 10,11,12 2014 1883 01,02,03,04,05,06,07,08,09, 10,11,12 2015 6124 01,02,03,04,05,06,07,08,09, 10,11,12 2016 358 01,02 03,04,05,06,07,08,09, 10,11,12 Pontianak Thành thị 2012 2739 07,08,09,10,11,12 01,02,03,04,05,06

Quốc

gia Khu vực

Tên trạm

AERONET Đặc điểm Vị trí (kinh

độ, vĩ độ) Năm Số dòng dữ liệu Tháng có dữ liệu Tháng không có dữ liệu (109.19086,0. 07538) 2013 6171 01,02,03,04,05,06,07 08,09,10,11,12 2014 3541 02,03,04,05,06,07,08,09,10, 11,12 1 2015 5585 01,02,03,04,06,07,08,09,10, 11,12 5 2016 786 01,02 03,04,05,06,07,08,09, 10,11,12 Lào

Miền bắc Luang_Namtha Nông thôn (101.4162,20. 9311) 2012 1009 03,04,05 01,02,06,07,08,09,10, 11,12 2013 1102 01,02,03,04 05,06,07,08,09,10,11,

Một phần của tài liệu NGHIÊN cứu và ĐÁNH GIÁ (Trang 90 - 144)

Tải bản đầy đủ (PDF)

(144 trang)