Chức năng nhận dạng của hệ thống

Một phần của tài liệu (LUẬN văn THẠC sĩ) nhận dạng khuôn mặt người và ứng dụng trong bảo toàn thông tin 04 (Trang 43 - 53)

Như vậy c|c chức năng chương trình bao gồm:

 Kết nối đến webcam, đọc ảnh.

 Ph|t hiệnkhuôn mặt có trong webcam, trích ảnh khuôn mặt đ~ ph|t hiện được ...

 Nhận dạng khuôn mặt được ph|t hiện.

 Đăng ký người dùng nếungười đó chưa có ảnh trong csdl.  X|c thực người dùng bằng mật khẩu.

 Hệ thống quản lý điểm.

a. Xử lý đầu vào:

Chương trình nhận đầu v{o l{ file ảnhwebcam, tuy nhiên, việc ph|t hiện khuôn mặt được thực hiện trên c|c bức ảnh, do đó, với đầu v{o l{ webcam ta

0 HỆ THỐNG PHÁT HIỆN, NHẬN DẠNG MẶT NGƯỜI NGƯỜI DÙNG Capture ảnh

phải chuyển th{nh c|c ảnh tĩnh v{ xử lý trên từng ảnh tĩnh. Sau khi đ~ có ảnh đầu v{o rồi thì sẽ chuyển ảnh cho giai đoạn xử lý tiếp theo, đó l{ ph|t hiện,nhận dạng c|c khuôn mặt có trong ảnh.

b. Phát hiện khuôn mặt

Sau khi có ảnh truyền v{o, hệ thống sẽ thực hiện chức năng ph|t hiện khuôn mặt có trong ảnh.

Việc ph|t hiện khuôn mặt được thực hiện nhanh bằng thuật to|n adaboost thông qua lớp EMGU.CV.CascadeClassifiercủa EmguCV. H{m n{y thực hiện việc ph|t hiện đối tượng dựa trên c|c đặc trưng haar-like, cụ thể l{ nhờ v{o một bộ Cascade được truyền v{o cho h{m. Bộ Cascade được x}y dựng theo dạng c}y (tree-node) v{ đ~ được huấn luyện từ trước.

c. Nhận dạng

Khuôn mặt sau khi được ph|t hiện sẽ được t|ch ra khỏi bức ảnh v{ tiến h{nh nhận dạng.Việc nhận dạng khuôn mặt được thực hiện bằng thuật to|n eigenface thông qua lớp EMGU.CV.EigenFaceRecognizercủa EmguCV.

Lớp EigenFaceRecognizer |p dụng PCA trên mỗi hình ảnh, kết quả sẽ l{ một ảnh c|c gi| trị Eigen đưa v{o học v{ dùng để đo|n nhận.Ở đ}y, h{m khoảng c|ch Euclid được sử dụng để đưa ra ứng cử viên giống nhất so với ảnh đầu v{o.

d.Hệ thống quản lý điểm.

Sau khi nhận dạng th{nh công, người dùng sẽ chuyển sang chức năng đăng nhập mật khẩu. Vượt qua hai vòng đăng nhập người dùng v{o giao diện để l{m việc với hệ hệ thống quản lý điểm của sinh viên với c|c chức năng cơ bản như thêm, sửa, xóa… c|c thông tin về sinh viên, môn học, điểm, v{ danh mục khoa.

- CSDL ảnh: Ảnh chưa có trong CSDL sẽ được tiến h{nh qu| trình đăng ký. Mỗi khuôn mặt sẽ được chụp 10 ảnh kh|c nhau v{ lưu v{o csdl , c|c thông tin gồm tên người, tên file lưu trong file XML v{ ảnh của người đó. <Faces_For_Training> <FACE> <NAME>NAME</NAME> <FILE>face_NAME_2057798247.jpg</FILE> </FACE> </Faces_For_Training>

- CSDL chương trình quản lý điểm:

4.4. Kết quả chạy chương trình.

- Giao diện Form đăng nhập sử dụng nhận dạng khuôn mặt:

- Giao diện đăng nhập bằng mật khẩu:

KẾT LUẬN

Kết luận

Luận văn có hai kêt quả chính:

1/. Nghiên cứu t{i liệu để trình b{y c|c vấn đề sau:

+ Cơ sở khoa học v{ thực tiễn của vấn đề nhận dạng mặt người. + Phương ph|p Nhận dạng mặt người.

+ Nhận dạng mặt người v{ vấn đề an to{n thông tin.

2/. Thử nghiệm chương trình nhận dạng mặt người kết hợp với kỹ thuật sử dụng mật khẩu v{o b{i to|n đăng nhập hệ thống thông tin quản lý.

Trên cơ sở nghiên cứu về b{i to|n nhận dạng mặt người trong ảnh, tôi đ~ |p dụng th{nh công mô hình Cascade of Classfier v{o b{i to|n ph|t hiện mặt người trong ảnh v{ thuật to|n PCA để nhận dạng mặt người. Về chương trình demo, sau khi thử nghiệm với webcam, chương trình đạt kết quả tốt, thời gian ph|t hiện nhanh đối với c|c ảnh mặt người chụp thẳng, chất lượng ảnh tốt (chụp bằng m|y kĩ thuật số), tuy nhiên đối với c|c ảnh chụp nghiêng hay ảnh có mầu sắc qu| tối thì chương trình gần như không thể nhận dạng được khuôn mặt trong bức ảnh đấy.Chương trình sẽ không thể ph|t hiện mặt người trong điều kiện độ s|ng qu| yếu v{ góc quay nghiêng qu| 20o.

TÀI LIỆU THAM KHẢO

[1]. Ming-Hsuan Yang, David J. Kriegman, Narendra Ahuja, “Detecting Faces in Images: A Survey”, IEEE Transaction on Pattern Analysis and Machine Intelligence (PAMI), Vol. 24, No 1, pp. 34-47, Jan 2002.

[2]. Stan Z. Li, Zhen Qiu Zhang, “FloatBoost Learning and Statistical Face Detection”, IEEE Transaction on Pattern Analysis and Machine Intelligence (PAMI), Vol. 26, No, pp. 1-12, Sep 2004.

[3]. Stan Z. Li, Juwei Lu, “Face Detection, Alignment and Recognition”, Book Chapter 9, pp. 385-455, Emerging Topics in Computer Vision, Prentice Hall, ISBN 0-13-101366-1, Jul 2004.

[4]. P. Viola, M. Jones, “Robust Real Time Object Detection”, Proc. IEEE ICCV Workshop on Statistical and Computational Theories of Vision, Jul 2001. [5]. P. Viola, M. Jones, “Rapid object detection using a boosted cascade of simple features”, Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR’01), pp. 511-518, Dec 2001.

[6]. K. K. Sung, T. Poggio, “Example-based learning for view-based human face detection”, IEEE Transaction on Pattern Analysis and Machine

Intelligence

(PAMI), Vol. 20, No. 1, pp. 39-51, Jan 1998.

[7]. H. Rowley, S. Baluja, T. Kanade, “Neural network-based face detection”, IEEE Transaction on Pattern Analysis and Machine Intelligence (PAMI), Vol. 20, No. 1, pp. 23-38, Jan 1998.

[8]. H. Schneiderman, T. Kanade, “Probabilistic Modeling of Local

Computer Vision and Pattern Recognition (CVPR’98), pp. 45-51, 1998. [9]. A. Rajagopalan, K. Kumar, J. Karlekar, R. Manivasakan, M. Patil, U. Desai, P. Poonacha, S. Chaudhuri, “Finding Faces in Photographs”, Proc. 6th IEEE Conf. Computer Vision (ICCV’98), pp. 640-645, 1998.

[10]. E. Osuna, R. Freund, F. Girosi, “Training Support Vector Machines: An Application to Face Detection”, Proc. IEEE Conf. Computer Vision and

Pattern

Recognition (CVPR’97), pp. 130-136, 1997.

[11]. G. Yang, T. S. Huang, “Human Face Detection in Complex Background”, Pattern Recognition, Vol. 27, No. 1, pp. 53-63, 1994.

[12]. K. C. Yow, R. Cipolla, “Feature-Based Human Face Detection”, Image and Vision Computing, Vol. 15, No. 9, pp. 713-735, 1997.

[13]. T. K. Leung, M.C. Burl, P. Perona, “Finding Faces in Cluttered Scenes Using Random Labeled Graph Matching”, Proc. 5th IEEE Conf. Computer Vision (ICCV’95), pp. 637-644, 1995.

[14]. C. Kotropoulos, I. Pitas, “Rule-based Face Detection in Frontal Views”, Proc. Int’l Conf. Acoustics, Speech and Signal Processing, Vol. 4, pp. 2637- 2540, 1997.

[15]. A. Lanitis, C. J. Taylor, T. F. Cootes, “An Automatic Face Identification System Using Flexible Appearance Models”, Image and Vision Computing, Vol.

13, No. 5, pp. 393-401, 1995.

[16]. M. Turk, A. Pentland, “Eigenfaces for Recognition”, Journal of Cognitive Neuroscience, Vol. 3, No. 1, pp. 71-86, 1991.

[17]. I. Craw, D. Tock, A. Bennett, “Finding Face Features”, Proc. 2nd European Conf. Computer Vision (ECCV’92), Vol. 2, pp. 92-96, 1992.

[18]. T. Kanade, “Picture Processing Computer Complex and Recognition of Human Faces”, PhD thesis, Kyoto Univ., 1973.

[19]. Intel Open Source Computer Vision Library-OpenCV phiên bản 4.0 http://www.intel.com/technology/computing/opencv/.

[20]. Intel Image Processing Library phiên bản 2.5

Một phần của tài liệu (LUẬN văn THẠC sĩ) nhận dạng khuôn mặt người và ứng dụng trong bảo toàn thông tin 04 (Trang 43 - 53)

Tải bản đầy đủ (PDF)

(53 trang)