Nghiên cứu khả năng tái sử dụng vật liệu

Một phần của tài liệu Luận án Tiến sĩ Nghiên cứu chế tạo một số vật liệu nano vô cơ hiệu năng cao định hướng ứng dụng trong xử lý nước (Trang 61)

Khảnăng tái sử dụng của hai vật liệu IFMB và CAB/CGA được nghiên cứu. Chu trình hấp phụ - giải hấp phụđược lặp lại 5 lần.

Hấp phụ lần 1:

Vật liệu IFMB: 500 ml dung dịch RY-145 nồng độ300 mg/l và 0,5 g IFMB được cho vào cốc thủy tinh 1000 ml, khuấy trong 120 phút ở nhiệt độ phòng với tốc độ 120 v/ph. Lọc tách riêng dung dịch và phần vật liệu hấp phụ rắn.

Vật liệu CAB/CGA: 100 ml dung dịch NH4+ nồng độ (NH4+ - N) 25 mg/l và 0,15 g CAB/CGA được cho vào bình tam giác 250 ml, lắc trên máy lắc IKA HS 260 Basic, tốc độ 120 v/ph, ở nhiệt độphòng trong 30 phút. Sau đó vật liệu được lọc tách ra khỏi huyền phù, thu dung dịch sau lọc.

Các dung dịch sau lọc được phân tích xác định kết quả hấp phụ lần đầu của vật liệu.

Giải hấp phụ lần 1:

Vật liệu IFMB: Vật liệu sau khi đã hấp phụ lần 1 và tách ra khỏi dung dịch được rửa giải bằng dung dịch NaOH 0,1 M cho đến khi giải hấp hoàn toàn thuốc nhuộm ra khỏi vật liệu. Rửa vật liệu bằng nước cất 2 lần đến pH trung tính, sau đó rửa 1 lần bằng ethanol để bảo vệ thành phần Fe0 (như khi tổng hợp vật liệu). Cuối cùng sấy khô ở 80 oC, thu được vật liệu đã hấp phụ lần 1.

Vật liệu CAB/CGA: Vật liệu sau khi đã hấp phụ lần 1 và tách ra khỏi dung dịch được khuấy với 50 ml dung dịch NaOH nồng độ 0.1 M trong 10 phút. Sau đó lọc và rửa vật liệu bằng nước cất đến pH trung tính. Cuối cùng sấy khô ở 80 oC, thu được vật liệu đã hấp phụ lần 1.

Vật liệu sau khi rửa giải lần 1 tiếp tục được sử dụng trong các chu trình sau. Hiệu suất hấp phụ trong mỗi chu trình được tính theo công thức 1.4

2.4. Các phương pháp đặc trưng vật liệu và phân tích đánh giá kết quả hấp phụ

2.4.1. Nhiễu xạ tia X (XRD): Sử dụng thiết bị Siemen D5000 (Viện Khoa học vật liệu, Viện Hàn lâm Khoa học và Công nghệ Việt Nam) và thiết bị D8 Advance liệu, Viện Hàn lâm Khoa học và Công nghệ Việt Nam) và thiết bị D8 Advance Brucker - CHLB Đức (Đại họcKhoa học tự nhiên, Đại họcQuốc gia Hà Nội) dùng tia CuKα - λ = 0,154 nm, bước quét 0,03o, góc quét 2θtừ 0 - 70o.

2.4.2. Phổ hồng ngoại (FTIR):

Sử dụngthiết bị IMPACT 410-Nicolet - CHLB Đức (Viện Hóa học, Viện Hàn lâm KH&CN Việt Nam). Mẫu được nghiền mịn và ép thành viên với KBr, đo trong khoảng số sóng từ 400 đến 4000 cm-1.

2.4.3. Hiển vi điện tử quét phát xạ trường (FE-SEM)

Sử dụng thiết bị Hitachi S4800 –Nhật Bản, Viện Khoa học vật liệu, Viện Hàn lâm Khoa học và Công nghệ Việt Nam.

2.4.4. Hiển vi điện tử truyền qua (TEM)

Ảnh TEM được chụp trên kính hiển vi JEOL JEM-3010 Nhật Bản (Viện Vệ sinh dịch tễ trung ương). Mẫu được siêu âm 30 phút sau đó đưa lên lưới đồng có phủ carbon.

2.4.5. Tán xạ ánh sáng

Dùng để xác định phân bố kích thước hạt FB, sử dụng thiết bị Horiba scientific SZ-100 - Nhật Bản (Viện Hóa học, Viện Hàn lâm Khoa học và Công nghệ Việt Nam).

2.4.6. Đẳng nhiệt hấp phụ khí nitơ

Được thực hiện trênthiết bị Micromeritics - Mỹ (Viện Hóa học, Viện Hàn lâm Khoa học và Công nghệ Việt Nam). Dựa vào số liệu thu được, xác định diện tích bề mặt riêng của vật liệu và kích thước lỗ xốp theo phương pháp BET.

2.4.7. Phổ tán sắc năng lượng tia X (EDX)

Thiết bị Hitachi S4800, hệ EMAX Energy (Viện Khoa học vật liệu, Viện Hàn lâm Khoa học và Công nghệ Việt Nam).

2.4.8. Phương pháp đo đường cong từ hoá

Phương pháp này được sử dụng để đánh giá đặc trưng từ của vật liệu FB, được thực hiện trênhệ từ kế mẫu rung (VSM) tại Viện Khoa học vật liệu, Viện Hàn lâm Khoa học và Công nghệ Việt Nam.

2.4.9. Phân tích nhit (TG-DTA)

Mẫu được đo từnhiệt độphòng đến 900 oC trong không khí, tốc độ nâng nhiệt 10 oC/phút trên thiết bị Setaram Labsys Evo (tại Viện Hóa học, Viện Hàn lâm Khoa học và Công nghệ Việt Nam).

2.4.10. Phương pháp dch chuyn pH (pH drift method)

Phương pháp này dùng để xác định PZC của vật liệu, dựa theo tài liệu [145]. Thực hiện trênhai dãy dung dịch KNO3nồng độ 0.01M và 0.001M. Cách tiến hành: 25ml dung dịch KNO3 0,01M (hoặc 0,001M) được cho lần lượt vào các bình tam giác

có dung tích 100 ml. Giá trị pH (pHi) trong mỗi bình được điều chỉnh từ 3 đến 9 bằng dung dịch HCl 0,1 M, hoặc dung dịch NaOH 0,1 M. Cho 0,075 g vật liệu vào mỗi bình tam giác trên, đậy kín và lắc trên máy lắc rung (máy IKA HS 260 basic), tốc độ 120 v/ph, tại nhiệt độ phòng trong 24 h để đạt được cân bằng. Lọc lấy dung dịch và đo các giá trị pH (pHf). Đồ thị biểu diễn sự phụ thuộc của pH (độ chênh lệch giữa các giá trị pHi và pHf) vào pHi là một đường cong. Giao của đường cong và trục hoành (pH = 0) cho giá trị PZC cần xác định. Giá trị PZC xác định trên dung dịch KNO3ở hai nồng độ phải tương đồng.

2.4.11. Xác định độ trương nở ca vt liu CAB/CGA

Ngâm 0,5 g CAB/CGA khô trong nước cất đến bão hòa (4 h), sau đó lọc trên giấy lọc băng vàng. Cân mẫu sau khi hấp thụnước. Độ trương nở của vật liệu (Qep) được tính theo phương trình sau:

𝑄𝑒𝑝 = 𝑚2−𝑚1

𝑚1 (2.2) Trong đó: m1, m2 là khối lượng của mẫu vật liệu khô và mẫu vật liệu trương nở tương ứng. Quá trình được thực hiện hai lần và lấy kết quả trung bình.

2.4.12. Hấp thụ nguyên tử AAS

Sử dụngđể xác định nồng độ các dung dịch As(III), As(V), Pb2+ và Cd2+, thiết bịPerkin Elmer (Mỹ), Viện Hóa học, Viện Hàn lâm Khoa học và Công nghệ VN.

2.4.13. Phương pháp đophổ UV-Vis

Sử dụng thiết bị Spectrophotometer DR/4000U (Viện Hóa học, Viện Hàn lâm Khoa học và Công nghệ Việt Nam) để xác định nồng độ thuốc nhuộm RR-195 và RY-145.

Xác định nồng độ RR-195:

Trước hết quét phổ để xác định bước sóng hấp thụ cực đại max của RR-195. Kết quả xác định được max = 541 nm. Đường chuẩn xác định nồng độ RR-195 bằng phương pháp phổ UV-Vis tại bước sóng 541 nm được đưa trên Hình 2.4.

Từphương trình đường chuẩn, nồng độ thuốc nhuộm được tính theo công thức: CRR-195 = (A - 0,055)/0,0197 (2.3) Trong đó: A là độ hấp thụ quang tại bước sóng 541nm

Hình 2.4. Đường chuẩn xác định nồng độ RR-195

Xác định nồng độ RY-145:

Thực hiện tương tựnhư với thuốc nhuộm RR-195, xác định được max = 420 nm. Đường chuẩn xác định nồng độ RY-145 tại bước sóng 420 nm, được cho trên Hình 2.5. Nồng độ RY-145 được tính theo công thức:

CRY-145 = (A + 0,0005)/0,0105 (2.4)

Hình 2.5. Đường chuẩn xác định nồng độ RY-145

2.4.14. Phương pháp so màu xác địnhnồng độ amoni

Sử dụng thiết bị Visible Spectrophotometer (722), thực hiện theo TCVN 5988:1995.

2.4.15. Phương pháp phân tích xác định ch tiêu COD (nhu cầu oxy hóa hóa học)

COD được xác định bằng phương pháp chuẩn độ theo TCVN 5220:1995.

2.4.16. Phương pháp phân tích xác định ch tiêu TOC (tổng lượng carbon hữu cơ)

TOC được xác định theo TCVN 6634:2000, tại phòng Phân tích chất lượng môi trường, Viện Công nghệ Môi trường, Viện Hàn lâm Khoa học và Công nghệ VN.

y = 0,0197x + 0,055 R² = 0,999 0 0,5 1 1,5 2 0 20 40 60 80 100 Đ ộ hấp thụ quan g (A BS) Nồng độ RR195 (mg/l) y = 0,0105x - 0,0005 R² = 0,999 0 0,2 0,4 0,6 0,8 0 20 40 60 80 Đ ộ hấp thụ quan g (A bs ) Nồng độ (mg/l)

CHƯƠNG 3. KẾT QUẢ VÀ THẢO LUẬN 3.1. Vật liệu FB

Như đã trình bày trong phần tổng quan, đã có nhiều nghiên cứu tổng hợp và ứng dụng vật liệuFB trong hấp phụ xửlý môi trường. Tuy nhiên trong các công trình đã công bố, bentonite thường được sử dụng trực tiếp, do đó quá trình tổng hợp vật liệu chỉ dẫn đến mở rộng khoảng cách giữa các lớp tới một mức độ giới hạn và không có sựthay đổi lớn về cấu trúc lớp của bentonite.

Để tổng hợp FB, chúng tôi sử dụng bentonite đã được xử lý tách lớp thành dạng nanoclay, nhằm tận dụng những lợi thế của nanoclay trong tổng hợp NC như: diện tích bề mặt cao, thuận lợi cho việc phân tán các hạt và dễ dàng thiết kế cấu trúc xốp của vật liệu hơn. Việc tách lớp bentonite được thực hiện bằng kỹ thuật tương đối đơn giản là dùng chất hoạt động bề mặt không ion kết hợp với siêu âm. Sau đó, nano Fe3O4được tổng hợp trên nền bentonite đã tách lớp.

3.1.1. Nghiên cu la chn thành phn FB và chếđộ nung

Thành phần FB và nhiệt độnung được lựa chọn trên cơ sở hiệu suất hấp phụ As(V) và độ bền hóa của vật liệu. Các kết quảđược thể hiện trên các Bảng 3.1, 3.2 và 3.3.

Xem xét hiệu suất hấp phụ As(V) của 5 mẫu FBm-80 có thành phần khác nhau (Bảng 3.1), thấy rằng tỉ lệ Fe/bentonite = 75/25 (mẫu FB75-80) cho kết quả hấp phụ As(V) tốt nhất. Hiệu suất hấp phụtăng khi hàm lượng Fe3O4tăng (thành phần chính đóng vai trò hấp phụtăng). Tuy nhiên, khi lượng bentonite quá thấp có thể làm giảm sự phân tán đồng đều cũng như giảm hiệu quả bảo vệ các hạt nano Fe3O4 dẫn đến giảm hiệu suất hấp phụ.

Bảng 3.2 và 3.3 cho thấy, trong số các mẫu vật liệu có cùng thành phần 75% Fe3O4 được nung ở các nhiệt độ khác nhau, mẫu FB75-500 được nung ở 500 oC có hàm lượng Fe trong dung dịch thấp nhất chứng tỏđộ bền hóa cao nhất, mặc dù hiệu suất hấp phụ có suy giảm nhưng không nhiều. Thực tế khi tạo hạt và nung vật liệu ở nhiệt độ cao, chúng tôi cũng nhận thấy các hạt FB75-500 có độ bền cơ cao hơn, ít bị mài mòn hơn.

Do vậy, mẫu FB75-500 được chọn để nghiên cứu đặc trưng vật liệu và khả năng hấp phụ của vật liệu.

Bảng 3.1. Hiệu suất hấp phụ As(V) của các mẫu vật liệu có thành phần khác nhau (Co = 100 µg/l; m = 0,1g/l; t = 120 phút, v = 60 v/phút)

Mẫu FB25-80 FB50-80 FB75-80 FB90-80 FB100-80

Ce 53,27 26,54 9,75 17,56 21,25

Hiệu suất (%) 46,72 73,46 90,32 83,46 79,35

Bảng 3.2. Hiệu suất hấp phụ As(V) của các mẫu vật liệu được nung ở các nhiệt độ khác nhau (Co = 100 µg/l; m = 0,1g/l; t = 120 phút, v= 60 v/phút) Mẫu FB75-80 FB75-250 FB75-350 FB75-500 TB/FB (g/g) 0 1/10 1/10 1/10 Ce (µg/l) 9,70 4,50 6,80 9.00 Hiệu suất % 90,32 95,50 94,2 93,0 Bảng 3.3. Độ bền hóa học của các mẫu vật liệu Mẫu FB75-80 FB75-250 FB75-350 FB75-500 Thể tích dung dịch ban đầu (ml) 100 100 100 100 Khối lượng FB (g) 0,5 0,5 0,5 0,5 Thể tích dung dịch cuối (ml) 150 150 150 150

Hàm lượng Fe tổng trong dung dịch cuối (mg/l)

15,4 4,3 0,8 0,5

3.1.2. Các đặc trưng cơ bản ca vt liu

3.1.2.1. Thành phần và cấu trúc pha vật liệu

Giản đồ XRD:

Giản đồ XRD của bentonite, Fe3O4 được tổng hợp không có bentonite (FB100-80) và mẫu composite FB75-500 được đưa ra trên Hình 3.1 và Phụ lục 1 (PL 1.1 và PL 1.2). Trên giản đồ XRD của cả hai mẫu FB100-80 và FB75-500 (Hình 3.1a và 3.1b, tương ứng) chỉ xuất hiện các vạch đặc trưng cho cấu trúc spinel đảo của vật liệu (JCPDS 19-0629). Biết rằng Fe3O4 dễ bị oxy hoá thành maghemite γ-Fe2O3 và sau đó thành hematite α-Fe2O3 từ nhiệt độ khoảng trên 220oC [146]. Vì magnetite Fe3O4 và maghemite γ-Fe2O3 có cùng cấu trúc và vị trí các vạch nhiễu xạtương tự nhau nên rất khó xác định sự có mặt của γ-Fe2O3 [147].

Hình 3.1. Giản đồ XRD của các mẫu FB100-80 (a), FB75-500 (b) và của bentonite trong quá trình xử lý tách lớp (c)

(a)

(b)

Tuy nhiên, trên giản đồ XRD của FB75-500 (nung ở 500 oC) không thấy xuất hiện vạch đặc trưng của α-Fe2O3, chứng tỏ các hạt nano sắt từ đã trở nên bền nhiệt hơn khi có mặt bentonite và tinh bột. Hình 3.1c là giản đồ XRD của các mẫu bentonite trong quá trình xử lý tách lớp (PL 1.3). Khoảng cách giữa các lớp MMT được xác định từ vị trí vạch nhiễu xạ ứng với mặt tinh thể (001) tại 2θ khoảng 6 - 7o. Khi bentonite trương nởtrong nước, khoảng cách d(001)tăng lên 12,7Å (Hình 3.2c-1). Sau đó, khi có mặt PEG, khoảng cách d(001) tiếp tục tăng đến 15.9 Å (Hình 3.2c-2). Điều này chứng tỏ rằng các phân tử hữu cơ đã xen vào giữa các lớp MMT làm tăng khoảng cách giữa chúng. Tiếp tục siêu âm huyền phù và kiềm hóa, trên giản đồ XRD của mẫu (Hình 3.2c-3) không thể hiện vạch đặc trưng cho cấu trúc lớp của MMT, cho thấy cấu trúc lớp đã bị phá vỡ, huyền phù bentonite đã tách lớp ở mức độ cao (exfoliated) chuyển thành nanoclay [148, 149].

Ph FTIR:

Phổ FTIR của mẫu FB75-500 được đưa trên Hình 3.2. Hai vạch hấp thụ khá mạnh tại 592 và 644 cm-1đặc trưng cho dao động hóa trị Fe-O của nano Fe3O4. Những vạch này đã dịch chuyển đáng kể về vùng sốsóng cao hơn so với các vạch đặc trưng cho nanoFe3O4 (tại khoảng 580 và 630 cm-1 tương ứng [150, 151]). Điều này có thể giải thích là do sự hình thành liên kết Fe-O-Si với bentonite, nhóm Fe-O-Si(O-) đã thay thế một phần cho nhóm Fe-O-H trên bề mặt các hạt Fe3O4. Các nhóm Si(O-) âm điện hơn –H, dẫn đến tăng hằng số lực liên kết của liên kết Fe-O, nên làm cho vạch hấp thụ này dịch chuyển về vùng sốsóng cao hơn [150].

Bên cạnh đó, trên phổ cũng xuất hiện các vạch đặc trưng cho bentonite. Các vạch hấp thụ hẹp, cường độ yếu trong vùng gần 3700-3900 cm-1 được gán cho liên kết Al-OH-Al của MMT trong bentonite. Dải hấp thụ rộng ở vùng gần 3419 cm-1 và 1633 cm–1 là của nhóm -OH trong cấu trúc MMT và của nước hấp phụ trên bề mặt vật liệu. Vạch hấp thụ tại 1041 cm-1đặc trưng cho dao động biến dạng của liên kết Si–O (trong mặt phẳng) của lớp silicate. Các vạch tại 474, 696 và 1155 cm-1 được gán cho dao động của liên kết Si-O, Al-O và Mg-O, hoặc sự kết hợp của chúng (Si- O-Al, Si-O-Mg và Al-O-Mg) [92, 152].

Hình 3.2. Phổ FTIR của mẫu FB75-500

3.1.2.2. Đặc trưng bề mặt vật liệu

Hình dạng kích thước hạt:

Ảnh SEM của mẫu FB100-500 và mẫu composite FB75-500 (Hình 3.3) cho thấy các hạt Fe3O4 tạo thành đều có dạng gần như hình cầu. Trong mẫu FB100-500, giữa các hạt có sự kết đám khá rõ, còn ở mẫu FB75-500, các hạt phân bố rời rạc và dường như tròn đều hơn. Có thể thấy rõ sự khác biệt vềkích thước hạt vật liệu. Hạt FB100-500 có kích thước khoảng 18-20 nm, trong khi hạt FB75-500 nhỏ hơn đáng kể, chỉ khoảng 10-12 nm. Các giá trịnày cũng phù hợp với tính toán kích thước tinh thể theo công thức Debye - Scherrer từ giản đồ XRD của các mẫu FB75-80, FB75- 350, FB75-500 (PL 2) là 11,21; 11,32 và 11,41 nm, tương ứng.

Mẫu FB75-500 được chụp ảnh TEM và xác định phân bốkích thước hạt. Ảnh TEM (Hình 3.4a) cho kết quảtương tựảnh SEM vềkích thước hạt, đồng thời một lần nữa khẳng định khi tạo thành composite, hiện tượng kết tập hạt đã được cải thiện đáng kể.

Kết quảxác định phân bốkích thước hạt (Hình 3.4b và PL 3) chỉ ra sự phân bố hạt trong khoảng khá hẹp, tập trung trong khoảng 8-18 nm với kích thước trung bình là 14.7 nm.

Hình 3.3. Ảnh SEM của mẫu FB100-500 (a) và FB75-500 (b)

Hình 3.4. Ảnh TEM (a) và phân bốkích thước hạt (b) của mẫu FB75-500

(a) (b)

(b) (a)

Kết quả phân tích EDX tại ba vị trí khác nhau (Bảng 3.4 (và PL 4) chứng tỏ sự phân bố của các nguyên tố trong mẫu là khá đồng đều. Đặc biệt, sự phân bốđồng đều của Si và Al chỉ ra rằng bentonite đã được tách lớp ở mức độ cao.

Bảng 3.4. Kết quả phân tích EDX của mẫu FB75-500

Vị trí đo EDX

Nguyên tố (% khối lượng) Tổng

(%) O Al Si K Fe Vị trí 1 41,13 3,25 6,11 0,79 48,72 100 Vị trí 2 39,85 3,18 6,06 0,67 50,23 100 Vị trí 3 43,97 2,84 6,43 0,27 46,49 100 Trung bình 41,77 3,09 6,20 0,42 48,48 100 Diện tích bề mặt:

Diện tích bề mặt riêng và kích thước mao quản trung bình của vật liệu được tính bằng phương pháp BET từ kết quả đo đẳng nhiệt hấp phụ N2 (PL 5) và đưa ra trong Bảng 3.5.

Bảng 3.5. Diện tích bề mặt của một số mẫu vật liệu

Một phần của tài liệu Luận án Tiến sĩ Nghiên cứu chế tạo một số vật liệu nano vô cơ hiệu năng cao định hướng ứng dụng trong xử lý nước (Trang 61)

Tải bản đầy đủ (PDF)

(140 trang)