CÁC PHƢƠNG PHÁP XÁC ĐỊNH MANGAN VÀ SẮT

Một phần của tài liệu Chương 2 (Trang 30)

1.3.1. Các phƣơng pháp hóa học

1.3.1.1. Phân tích khối lƣợng

Phân tích khối lượng là một phương pháp phân tích định lượng dựa trên sự đo đạc chính xác của khối lượng của chất cần xác định dưới dạng hợp chất

Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn

của nó với một thuốc thử thích hợp. Phương pháp này có độ chính xác cao nhưng thao tác phức tạp, tốn thời gian và chỉ xác định ở hàm lượng lớn.

Việc xác định Mangan dựa trên sự kết tủa Mn dưới dạng Mangan hidroxit theo phản ứng sau:

Mn2+ + 2OH- = Mn(OH)2↓ Sau đó đem nung kết tủa:

Mn(OH)2↓ = MnO + H2O

Đem cân dạng cân và xác định chính xác hàm lượng của Mn.

Tuy nhiên trong nước thì lượng Mangan rất nhỏ, do vậy ta không thể sử dụng phương pháp này được.

Phương pháp này tiến hành xác định kết tủa Fe(III) dưới dạng hidroxit để tách sắt ra khỏi một số kim loại kiềm, kiềm thổ, Zn, Pb, Cd và một số kim loại khác. Các hidroxit của các kim loại này kết tủa ở pH cao hơn so với hidroxit Fe(III) hoặc nó bị giữ lại khi có mặt NH3 trong dung dịch. Các ion tactrat, xitrat, oxalat, pyrophotphat có thể ảnh hưởng đến kết tủa sắt hoàn toàn. Khi có mặt các ion đó, người ta cho kết tủa với ion S2-

trong đó có lượng nhỏ cacđimi. Nhưng phương pháp này không được đánh giá cao vì sunfua các kim loại ít tan trong (NH4)2S dư. Khi kết tủa sắt bằng (NH4)2S có mặt tactrat ta có thể tách sắt ra khỏi titan, uran, valadi, photphat và một số các nguyên tố khác.

1.3.1.2. Phân tích thể tích

Trong phương pháp này người ta đo lượng thuốc thử cần dùng để phản ứng với một lượng đã cho của một chất cần xác định. Định lượng bằng phương pháp thể tích, nhanh chóng, đơn giản. Xong chỉ phù hợp với xác định hàm lượng lớn (≥0,1%). Do đó khi xác định hàm lượng vết nguyên tố Mn cần

Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn

phải làm giàu nhiều lần, rất phức tạp. Tùy thuộc vào loại phản ứng chính thường dùng mà người ta chia phương pháp phân tích thể tích thành các nhóm: Phương pháp trung hòa, phương pháp oxi hóa khử, phương pháp kết tủa và phương pháp Complexon.

Mangan được xác định bằng phương pháp complexon với EDTA, chất chỉ thị là 4-(2-piriđinazo)-rezoxin hay còn gọi là tắt là PAR.

Mn2+ + PAR = MnPAR Đỏ nho vàng

MnPAR + H2Y2- = MnY2- + PAR

Đối với sắt thì lgFeY = 25,10. Các phép chuẩn độ complexon thường tiến hành khi có mặt của chất tạo phức phụ để duy trì pH xác định nhằm ngăn ngừa sự xuất hiện kết tủa hiđroxit kim loại. Với sắt thường tiến hành như sau: Dung dịch chứa ion sắt cần xác định được điều chỉnh pH về 2,0; thêm vài giọt chỉ thị axit sunfosalixylic 0,1M, lúc này dung dịch có màu tím, đun nóng đến 700

C, và chuẩn độ bằng dung dịch EDTA 0,02M đến khi mất màu tím. Sau đó từ lượng EDTA đã tác dụng khi chuẩn độ sẽ tính được hàm lượng Fe trong mẫu.

Phương pháp này tiến hành đơn giản nhưng cho sai số lớn, nồng độ Fe trong dung dịch nhỏ thì khó chuẩn độ do phải quan sát sự chuyển màu bằng mắt thường, thiếu chính xác. Mặt khác, nếu dung dịch mẫu có lẫn các ion khác gây ảnh hưởng đến kết quả của phép phân tích.

1.3.2. Các phƣơng pháp phân tích công cụ

1.3.2.1. Các phƣơng pháp điện hóa

1. Phương pháp cực phổ

Phương pháp cực phổ được Heyvosky phát minh ra năm 1922, được giải thưởng Nobel năm 1959. Ưu điểm của phương pháp này với thiết bị

Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn

tương đối đơn giản mà có thể phân tích nhanh, nhạy, chính xác hàng loạt hợp chất vô cơ và hữu cơ mà không cần tách chúng ra khỏi hỗn hợp, trong vùng nồng độ 10-3

đến 10-6

mol/l.

Nguyên tắc của phương pháp này là đặt các thế khác nhau vào điện cực để khử các ion khác nhau vì mỗi ion có thể khử tương ứng và xác định. Do đó qua thể khử của ion có thể tính được ion đó. Nếu tăng dần thế của cực nhúng và dung dịch chất cần xác định thì cường độ dòng sẽ tăng đồng thời cho tới khi đạt được thế khử của ion trong dung dịch. Trong các điều kiện nhất định cường độ dòng tăng tỉ lệ thuận với nồng độ mà định lượng được ion đó.

Bằng phương pháp này ta có thể xác định thủy ngân trên điện cực rắn (điện cực vàng (AuRDE)). Điện phân dung dịch chứa thủy ngân tại -0,37V trong thời gian 120 phút, ta có thể xác định thủy ngân ở nồng độ cỡ 0,1 ppm. Ta có thể xác định đồng thời cả bốn nguyên tố (Hg, Pb, Cd, Cu) của mẫu trong môi trường đệm axetat với ba hệ điện cực: Điện cực thủy ngân treo HMDE; điện cực so sánh: Ag/AgCl và điện cực hỗ trợ Pt.

Tuy nhiên do sự tồn tại của dòng tụ điện mà phương pháp này không thể phân tích các đối tượng ở hàm lượng vết. Để khắc phục người ta dung nhiều phương pháp để tăng độ nhạy như: Phương pháp phổ sóng vuông, cực phổ xung vi phân … Các tác giả Gurtler, Chu Xuân Anh đã xác định lượng nhỏ Uran bằng cực phổ sóng vuông. Trong nghiên cứu của các tác giả Chương Huyến. Lê Thị Hương Giang cho thấy có thể xác định Selen bằng phương pháp cực phổ xung vi phân.

2. Phương pháp von – ampe hòa tan

Phương pháp von - ampe hòa tan là một phương pháp điện hóa có độ nhạy cao, có khả năng xác định được nhiều ion kim loại có nồng độ nhỏ

Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn

khoảng 10-6

÷ 10-8 mol/l với sai số 5÷15% trong điều kiện tối ưu. Phương pháp này cho phép xác định định lượng vết trong khoảng thời gian ngắn, kỹ

thuật phân tích đơn giản, tốn ít hóa chất, máy móc không phức tạp. Quá trình phân tích theo phương pháp Von –ampe hòa tan gồm 2 bước: + Điện phân làm giàu chất phân tích trên bề mặt điện cực làm việc tại một thế phù hợp.

+ Hòa tan kết tủa làm giàu bằng cách phân cực, ngưỡng cực làm việc, ghi đường cong hòa tan chiều cao của đường phân cực ghi được trong những điều kiện thích hợp, tỉ lệ thuận với nồng độ của chất trong dung dịch. Điều kiện đó cho phép ta định lượng chất phân tích bằng phương pháp đường chuẩn hoặc phương pháp thêm.

Phương pháp đã được sử dụng để xác định hàm lượng vết Paladi trong các mẫu khác nhau như mẫu dầu mỏ thô, xăng xe máy và xăng máy bay. Paladi được xác định bằng phương pháp Von- ampe hòa tan với catot xung vi phân trong dung dịch nền H2SO4 0,01N cùng với sự trợ giúp của 50 ng Te4+

tại thế - 0,82V.

1.3.3. Các phƣơng pháp quang học

1.3.3.1. Phƣơng pháp trắc quang

Nguyên tắc của phương pháp trắc quang là dựa trên đo độ hấp thụ ánh sang của một dung dịch phức tạo thành giữa ion cần xác định với thuốc thử trong môi trường thích hợp khi được chiếu chùm sáng. Phương pháp này định lượng theo phương trình:

A = K.C

Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn

K: Hằng số thực nghiệm, C: Nồng độ chất phân tích.

Phương pháp trắc quang xác định Mangan dựa trên việc đo mật độ quang của dung dịch chứa ion MnO4, các axit pirophotphat manganit hoặc phức chất của Mangan với thuốc thử hữu cơ.

Để oxi hóa Mn(II) lên MnO4 người ta thường dùng chất oxi hóa là peiodat và pesunfat. Cường độ màu đỏ tím của MnO4 tỉ lệ với nồng độ Mn(II). Phổ hấp thụ của dung dịch MnO4 có hai cực đại ở bước sóng  = 525 nm ( = 2230) và  = 545 nm ( = 2420).

1) Chất oxi hóa là peiodat

Phản ứng oxi hóa: 2Mn2+ + 5IO4 - + 3H2O → 2MnO4 + 5IO3 - + 6H+

diễn ra tương đối nhanh trong dung dịch nóng chứa HNO3 hoặc H2SO4. Có tác giả còn đề nghị thêm một ít AgNO3 để tăng tốc độ oxi hóa và giảm bớt IO4

-

. Khi phân tích các dung dịch chứa nhiều sắt phải thêm H2SO4 và H3PO4, H3PO4làm mất màu ion Fe(III) do tạo thành phức chất và sự có mặt của nó trong mọi trường hợp là cần thiết vì nó ngăn cản sự tạo thành kết tủa có thể xảy ra của peiodat mangan. Nếu lượng Mn không quá bé thì có thể nâng nồng độ axit lên quá ngưỡng tối thiểu để có thể ngăn ngừa sự kết tủa Mn, tốc độ oxi hóa Mn tăng khi tăng nồng độ axit H2SO4 > 3,5N.

Khi nồng độ Mn rất bé thì lượng axit phải nhỏ hơn 15 ml H2SO4 đặc trong 100 ml hỗn hợp phân tích. Khi nồng độ axit lớn thì cường độ cực đại của màu không đạt được hoặc màu bị yếu đi và có màu hơi vàng. Vì vậy khi nồng độ Mn bé người ta dùng nồng độ axit bằng 2N (5-6% thể tích H2SO4). Fe(III) làm chậm quá trình oxi hóa.

Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn

Nếu trong dung dịch có mặt các chất khử phản ứng với iodat hoặc pemanganat cần phải đuổi chúng hoặc phân hủy chúng trước khi thêm peiodat.

Mặc dầu có thể có một lượng nhỏ Cl-

bị oxi hóa bởi IO4- tuy vậy tốt hơn cả nên đuổi chúng bằng cách làm bay hơi với H2SO4, đặc biệt nếu chất phân tích chứa ít Mn. Các ion Fe2+ , SO3 2- , NO2 - , Br-, I-, C2O4 2- ...có khả năng bị oxi hóa, các ion hữu cơ có thể đuổi hoặc phân hủy bằng cách làm bay hơi dung dịch với HNO3 hoặc hỗn hợp HNO3 và H2SO4. Trong số các ion ít cản trở có AsO43-, B4O72-, F-, ClO4-, P4O72-.

Các kim loại khác không cản trở nếu chúng không màu. Ảnh hưởng của các kim loại Zn2+

, Ni2+...được loại trừ bằng cách đo so với dung dịch phông, Cr(III) bị oxi hóa một phần bởi IO4-, khi tăng nồng độ axit thì lượng Cr bị oxi hóa giảm. Nếu trong dung dịch có đủ axit thì Ag, Pb, Hg không tạo kết tủa, tuy vậy Bi, Sn tạo nên đục ngay cả trong dung dịch axit mạnh.

Định luật Beer phù hợp khi nồng độ nhỏ nhất là CMn = 150 mg/L. Sự thay đổi nồng độ axit và lượng dư IO4

-

không ảnh hưởng đến cường độ màu.

2) Chất oxi hóa là pesunfat

Trong những điều kiện xác định, cả phương pháp pesunfat và peiodat đều cho kết quả thỏa mãn. Tuy nhiên pesunfat có ưu thế hơn so với phương pháp peiodat khi mà nồng độ Mn rất bé bởi vì việc oxi hóa hoàn toàn bằng peiodat trong những điều kiện này diễn ra rất chậm.

Phản ứng oxi hóa 2Mn2+ + 5S2O8 2- + 8H2O → 2MnO4 + 10SO4 2- + 16H+

được tiến hành ở nhiệt độ sôi trong môi trường axit photphoric – nitric khi có mặt lượng nhỏ AgNO3. Nồng độ Ag+

phải bé (10-5

M) để không tạo thành kết tủa rõ rệt khi có một lượng không lớn Cl-

Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn

H3PO4là cần thiết để ngăn ngừa kết tủa MnO2 và đảm bảo độ oxi hóa êm dịu Mn2+ thành MnO4 nồng độ H3PO4ít nhất phải bằng 0,1M, nồng độ HNO3phải xấp xỉ 0,3M, không nên dùng cao hơn. Các cản trở khi có mặt Cl-

có thể loại trừ bằng cách thêm HgSO4để chuyển Cl-

thành phức bền HgCl4 2-

. Khi có một lượng lớn Ti thì pesunfat oxi hóa Mn2+

thành MnO4 không hoàn toàn. Trong trường hợp này cần phải dùng IO4

-

.

Có thể xác định Mn khi có một lượng vừa phải các loại chất hữu cơ nếu kéo dài thời gian đun nóng và thêm nhiều hơn pesunfat.

Các dịch đất có chứa nhiều axit Humic thì có thể xuất hiện đục sau khi oxi hóa, trong trường hợp này cần phải đo mật độ quang của dung dịch sau khi phân hủy pemanganat bằng cách thêm một ít hiđroquinon và phải tiến hành hiệu chỉnh khi xác định chất khử.

Các dung dịch pemanganat đã được oxi hóa bền trong khoảng 24h ở nhiệt độ thường khi có mặt lượng dư pesunfat và khi không có chất hữu cơ.

Thioxianat là một thuốc thử nhạy với ion sắt (III), nó được sử dụng rộng rãi trong định tính và định lượng sắt. Vì axit thioxiamic là một axit mạnh nên nồng độ ion thioxianat ít bị ảnh hưởng bởi nồng độ ion H+

trong dung dịch. Cường độ màu của phức sắt (III) – thioxianat phụ thuộc vào nồng độ thioxianat, loại axit và thời gian phản ứng. Phức sắt(III)-thioxianat hấp thụ cực đại ở 480 nm. Dung dịch phức sắt (III)–thioxianat bị giảm màu khi để ngoài ánh sáng, tốc độ giảm màu chậm trong vùng axit yếu và nhanh khi nhiệt độ tăng. Khi có mặt hidrpeoxit hoặc amoni sunfat càng làm cho cường độ màu và độ bền màu của phức giảm đi. Cần phải cho nồng độ thioxianat dư, không những làm tăng độ nhạy của phép đo mà còn loại trừ được ảnh hưởng của các anion florua, phốt phát và một số anion khác tạo phức được với ion sắt (III). Còn những ion gây ảnh hưởng đến việc xác định sắt (III) bằng thuốc thử thioxianat như oxalat,

Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn

florua, chúng tạo phức với ion sắt (III) trong môi trường axit. Ion sunfat và phốt phát cũng gây ảnh hưởng (với một lượng đáng kể). Ngoài ra, còn có các ion tạo phức màu hay kết tủa với ion thioxianat như đồng(II), coban(II), bimut(III)…

Sự cản trở của coban(II) (do bản thân màu của nó) ta có thể loại trừ bằng cách đo bước sóng thích hợp. Các ion thủy ngân(II), cadimi(II), kẽm(II) tạo phức với ion SCN-

sẽ là ảnh hưởng cường độ màu của phức sắt(III)- thioxianat. Do đó, muốn sử dụng phương pháp này cần phải tách các ion ảnh hưởng đến màu của phức.

Phương pháp dùng thuốc thử thioxianat có giới hạn phát hiện kém, độ chính xác thấp (nếu ta không dùng các phép đo đặc biệt để tăng độ nhạy) nhưng được sử dụng rộng rãi vì phương pháp này đơn giản, nhanh, áp dụng được trong các dung dịch axit mạnh là thuốc thử tương đối rẻ tiền. Phương pháp này xác định được hàm lượng sắt từ 1mg/l đến 10 mg/l. Người ta, cũng sử dụng phức của sắt(II) với thioxianat để chiết lên dung môi hữu cơ nhằm tăng độ chọn lọc và độ nhạy cho phép xác định sắt(II). Trong nghiên cứu này, các tác giả đã nghiên cứu thành công phép chiết phức sắt(II) với thioxianat bằng chất chiết tetrabutylamoni bằng dung môi clorofom. Thioxianat là một trong các số thuốc thử vô cơ được dùng để xác định sắt.

1.3.3.2. Phƣơng pháp phổ phát xạ nguyên tử

Phương pháp này được sử dụng để phân tích định tính, định lượng các nguyên tố hóa học … Ưu điểm nổi bật của phương pháp này là độ nhạy cao, độ phân tích nhanh, tốn ít mẫu và có độ chính xác cao. Các tác giả Phạm Luận, Chu Xuân Anh, Trần Hồng Côn, Dương Thanh Thủy đã thành công trong việc xác định tạp chất trong oxit lantan tinh khiết bằng phương pháp quang phổ phát xạ.

Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn

Đặc biệt với sự ra đời của phổ phát xạ ICP trong vòng hơn chục năm trở lại đây đã đưa AES trở thành công cụ phân tích đắc lực với hàm lượng cỡ ng (nanogam). Một trong công trình thành công của phương pháp này là: “Xác định hàm lượng Vàng trong mẫu địa chất bằng phương pháp quang phổ phát xạ nguồn Plasma cao tần cảm ứng ICP – AES” của các tác giả Dương Minh Đức, Nguyễn Tiến Lượng, Đỗ Thị Thìn, Phạm Luận và Trần Tứ Hiếu.

1.3.3.3. Phƣơng pháp phổ hấp thụ nguyên tử

Cơ sở lý thuyết của phép đo AAS là sự hấp thụ năng lượng (bức xạ đơn sắc) của nguyên tử tự do ở trạng thái hơi khi chiếu chùm tia bức xạ của nguyên tố ấy trong môi trường hấp thụ. Tùy thuộc vào kỹ thuật nguyên tử hóa

Một phần của tài liệu Chương 2 (Trang 30)

Tải bản đầy đủ (PDF)

(95 trang)