Nguyên lý định vị ghi liên tục góc

Một phần của tài liệu Toàn văn LATS_Ngô Sỹ Cường (Trang 58)

Sự dịch chuyển góc Δgóc tín hiệu thu – truyền được tính theo cơng thức rút gọn sau:

Δgóc = Vp. F (2.12) Vp - Vận tốc góc quay của khối đầu quay thiết bị laser F - Tần số tiếp theo của xung

Khối quay của thiết bị quét laser mặt đất cho tốc độ đo góc rất cao, đơi khi hạn chế tốc độ đo. Tuy nhiên việc khối đầu thiết bị quay liên tục cũng có lúc dẫn tới trị đo khoảng cách khơng đồng nhất, cần tính đến việc bức xạ quay trở lại máy thu và khối đầu quay thiết bị dịch chuyển một giá trị góc nhất định.

2.1.4. Các phương pháp đo góc bằng hệ thống quét laser mặt đất

Q trình tự động hóa đo góc có thể chia ra thành các phương pháp cơ bản sau [57]:

- Phương pháp mã hóa đĩa code với bảng dấu thang số;

- Phương pháp sử dụng các đĩa xung;

- Phương pháp cảm ứng điện (tần số, biên độ, xung, điện trở); - Phương pháp đo thời gian;

- Phương pháp hỗn hợp xung và thời gian; - Phương pháp sử dụng hỗn hợp bảng; - Phương pháp sử dụng bảng code mã vạch; - Phương pháp phân cực;

- Phương pháp giao thoa.

bàn chia độ tính đại lượng đo góc được hiện bằng đĩa mã hóa, trên đĩa mã hóa tạo ra hệ thống các đường mã hóa với các thành phần riêng biệt dạng (có, khơng). Việc sắp xếp các thành phần đó vào dạng mã hóa tạo nên giá trị góc đo nhất định, mỗi một đường mã hóa là hạng giá trị góc đo. Số lượng đường và sự liên tục sắp xếp các thành phần trên các đường mã hóa phụ thuộc vào sự lựa chọn mã hóa và độ chính xác đo giá trị góc. Việc đọc mã hóa tiến hành bằng phương pháp quang học. Phương pháp đo góc này được quy về phương pháp đo tuyệt đối [57].

Phương pháp sử dụng các đĩa xung: Bản chất của phương pháp đo góc bằng

xung là đại lượng góc đo được xác định bằng số lượng xung thể hiện bằng các thành phần (có, khơng) trên cung của góc tạo bởi hai cạnh. Phương pháp này dựa trên cơ sở vạch raster thuộc hệ thống vạch chia radial vành ngoài của bàn chia độ. Phương pháp đo góc này được quy về phương pháp đo tương đối [57].

Những phương pháp cảm ứng điện: Những phương pháp này dựa trên nguyên lý

tương đồng sử dụng bộ tạo tần số xoay chiều. Trong hệ thống dựa trên sự cảm ứng điện đo góc trong đó cấu tạo như dạng máy phát điện. Máy phát có thể đo ở dạng biên độ bởi nguồn phát cho ra pha điện thế không thay đổi và đo biên độ điện áp từ máy phát tỷ lệ với góc quay của rotor cũng như bằng các pha khi biên độ điện áp máy phát ổn định mà pha thay đổi sẽ phụ thuốc vào góc quay của rotor. Máy phát pha ln chính xác hơn bởi khi biến đổi pha thành số ln tồn tại chính xác [57].

Phương pháp đo thời gian: Bản chất của phương pháp này xác định góc là

trong q trình đo thời gian quay của tiêu đo mà thực hiện vai trò cấu tạo của bộ đọc số. Sự phức tạp của phương pháp thực hiện đo thời gian đó là cần thiết tạo ra thiết bị

cho phép quay tiêu đo với tốc độ ổn định đáp ứng độ chính xác đo của từng cấp hạng.

Giá trị đo góc được xác định theo công thức [57]:

α = 2πr

n

τ (2.13)

60

Ở đây: τ – thời gian quay của tiêu đo;

n – số vòng quay của tiêu đo trong một phút; r – bán kính quay của tiêu đo.

Phương pháp đo góc này biến thể của phương pháp đo tương đối.

Phương pháp hỗn hợp xung và thời gian: Trong một số tài liệu gọi là phương

pháp đo động. Với phương pháp này trong hệ thống đo góc có nguồn phát và máy thu bức xạ xác định các hướng đo gốc và được liên kết chặt chẽ với bộ ngắm cho ra hướng quay của bàn chia độ. Khi quay bàn chia độ trên máy đo góc và che bằng rãnh chia vạch xuất hiện dòng ảnh sẽ biến đổi thành các xung. Hai dòng ảnh tạo hai xung sẽ xê dịch theo pha phụ thuộc vào số lượng xung n và τ. Hiệu của pha này xác định nhờ số đọc xung giữa các tiêu đo được gắn với bộ phận bộ ngắm và bàn chia độ. Bằng cách này sẽ nhận được số đọc giá trị đo góc thơ, phần đọc chính xác giá trị đo góc được xác định theo thời gian quay của tiêu đo giữa các xung của hai tín hiệu. Phương pháp này được quy về phương pháp đo góc tuyệt đối [57].

Phương pháp sử dụng hỗn hợp bảng: Phương pháp đo góc này là sự biến đổi

mã hóa, trong đó khử những khiếm khuyết như: độ phức tạp chế tạo bàn chia độ với nhiều đường mã hóa và thiết kế rất phức tạp bộ đếm. Ở phương pháp này sử dụng bàn chia độ với một đường mã hóa code, việc đếm thơng tin tiến hành nhờ một số bộ cảm biến. Vị trí và số lượng bộ đếm cảm biến thỏa mãn cho mỗi góc quay của bàn chia độ tương ứng trạng thái phối hợp đếm các nguyên tố, đó là phương pháp phối hợp bảng [57].

Phương pháp sử dụng bảng code mã vạch: Phương pháp này khác phương

pháp mã hóa bằng số lượng các bảng là thơng tin về kết quả đo góc được thể hiện dạng mã vạch.

Phương pháp phân cực: Bản chất của phương pháp phân cực dựa vào sự phụ

các bảng phối hợp, các bảng code mã vạch, tất cả các bộ phận nêu trên đảm bảo cho tốc độ cao đếm và đo góc chính xác (sai số đo góc đạt vài giây) và hiện thực hóa thiết kế đơn giản.

2.2. Các nguồn sai số ảnh hưởng đến kết quả quét laser mặt đất

2.2.1. Phân loại các sai số quét laser mặt đất

Tất cả các sai số của các đại lượng đo khi quét laser mặt đất có thể chia thành hai nhóm:

 Sai số thiết bị tạo nên bởi chất lượng chế tạo lắp ráp và hiệu chỉnh các bộ phận quang học, cơ học, điện tử của thiết bị quét;

 Sai số phương pháp mà chính các đại lượng đo do phương pháp xác định bằng thiết bị quét laser mặt đất.

Các sai số nhóm đầu thực tế được thể hiện trong hồ sơ lý lịch của thiết bị quét ngay trong quá trình chế tạo lắp ráp và được kiểm định theo định kỳ. Kết quả khảo sát độ chính xác bao gồm những kết luận về độ chính xác của từng khối cấu thành bằng các đặc tính kỹ thuật. Việc khử các sai số thiết bị theo nguyên tắc chỉ bằng cách thay thế các bộ phận hoặc công nghệ chế tạo ra thiết bị.

Sai số phương pháp thường được khử trong quá trình xử lý kết quả đo quét. Các sai số phương pháp khi quét laser mặt đất có thể kể đến như sau:

 Các sai số phương pháp do môi trường xung quanh tạo nên khi thực hiện qt laser (khí quyển, khúc xạ, sóng điện từ suy giảm, độ rung của thiết bị….)

 Các sai số phương pháp do các đặc tính của các đối tượng quét tạo nên (kích thước, hướng quét, cấu trúc, màu …)

Để khử các sai số phương pháp khi quét laser mặt đất gây nên có thể áp dụng hai hướng giải quyết cơ bản. Hướng thứ nhất là đánh giá riêng ảnh hưởng của các thành phần gây nên để khử sai số [41]. Hướng thứ hai thống kê xử lý đồng bộ ảnh hưởng của các yếu tố gây nên các đại lượng đo giống như thực hiện việc khử các sai số hệ thống vào các tọa độ điểm ảnh trong phương pháp đo ảnh.

Ở hướng giải quyết thứ nhất thường khử các sai số hệ thống thô từ kết quả đo quét góc và khoảng cách, thường gọi là xử lý sơ bộ ban đầu, phần xử lý sai số hệ thống còn lại áp dụng hướng xử lý đồng bộ sử dụng các mơ hình đa thức. Việc khử độ sai lệch vào các tọa độ của các điểm quét đối tượng địa vật bằng xử lý đồng bộ ảnh hưởng các yếu tố gây nên là hướng giải quyết tổng hợp nhất.

2.2.2. Những sai số thiết bị quét laser mặt đất

2.2.2.1. Độ ổn định làm việc của thiết bị quét laser mặt đất

Sử dụng nguồn bức xạ laser trong trạm quét hoặc là liên tục hoặc là phát ra xung với tần số cao dễ dẫn đến đốt cháy chính nguồn laser và cả khơng gian bên trong của máy qt. Vì vậy trong hệ thống thiết bị thường lắp ráp bộ phận làm mát. Nếu thiết bị không được làm mát sẽ dẫn đến các thiệt hại sau [23]:

 Khi bộ phận làm mát khơng đảm bảo, nguồn laser nóng sẽ dẫn tới biến dạng các bộ phận quay và đo của trạm quét laser mặt đất, ảnh hưởng xấu đến các đại lượng đo do sự phát xung của thiết bị và làm giảm thời gian làm việc của trạm quét.

 Máy quét quá nóng dẫn đến làm kẹt bộ phận quay của máy quét dẫn đến hỏng thiết bị.

Trong thiết bị quét laser mặt đất thực hiện việc làm mát bằng hai cách đó là:

 Trao đổi khơng khí mát từ ngồi vào bằng hệ thống quạt. Tuy nhiên cách làm này dễ dẫn đến máy qt khơng kín cũng như tăng độ ẩm và bụi trong máy.

 Hoặc đẩy khí nóng từ trong thiết bị ra bằng việc sử dụng bơm chân khơng khí nitơ. Chất lượng làm việc của hệ thống làm lạnh ảnh hưởng rất nhiều đến độ bền và ổn định của trạm quét laser mặt đất.

V = n

Ở đây: + C – tốc độ ánh sáng trong chân không, theo chuẩn của Liên đoàn Trắc địa và Địa vật lý quốc tế bằng 299 792 458 ± 1, 2m/giây

+ n – hệ số khúc xạ khí quyển, phụ thuộc vào các thành phần vật lý của mơi trường (áp suất khí quyển, nhiệt độ, độ ẩm khơng khí) và độ dài của sóng điện từ.

Ngày nay việc xác định tốc độ lan truyền của sóng điện từ trong mơi trường chân khơng bằng phương pháp vật lý và sử dụng công thức [59]:

C = (2.15)

Ở đây: + λ v – độ dài của sóng điện từ trong môi trường chân không;

+ fv – tần số dao động sóng điện từ. Bằng phương pháp đo vật lý, đại lượng vận tốc truyền sóng điện từ giao động trong môi trường chân không với sai số tương đối là 3 x 10 – 9

[59].

Sai số đo khoảng cách MR bằng phương pháp đo pha với nhiều cách khác nhau được xác định theo công thức [59]:

2 2 2

= √ 2 + ( ) 2 + 2 [( ) + ( ) ] (2.16)

4

Ở đây: mc - sai số xác định số hiệu chỉnh ổn định của thiết bị;

mα - sai số xác định hiệu pha giữa điểm gốc và điểm tín hiệu điểm đo; mf - sai số do sự khác biệt tần số đo với giá trị chuẩn của nó;

mν – sai số xác định vận tốc truyền sóng điện từ trong khí quyển.

Sai số xác định số hiệu chỉnh ổn định của thiết bị với trị đo mC phụ thuộc vào đặc tính cấu tạo của máy quét laser mặt đất (góc đo pha, khác biệt điện thế trong lưới

so với chuẩn…) và phương pháp xác định số hiệu chỉnh khi kiểm định thiết bị. Hiện nay phương pháp kiểm định máy đo dài sóng điện từ khi thiết bị và gương chiếu được định tâm với sai số đạt 0,1mm. Thực tế giá trị đó mang đặc tính giới hạn độ chính xác để xác định sai số thiết bị.

Sai số xác định hiệu pha mα chủ yếu phụ thuộc độ chính xác thiết bị pha và gồm cả sai số hệ thống và sai số ngẫu nhiên. Nguyên nhân chính xuất hiện những sai số đều liên quan tới các đặc tính vật lý học đó là [59]:

- Những độ ầm khi đo;

- Khơng tuyến tính của đặc tính pha;

- Khơng tuyến tính của đặc tính biên độ - pha;

- Ảnh hưởng độ nhịp nhàng của những thành phần tín hiệu đo;

- Sự biến đổi ghi pha – code (máy đo pha số).

Trong các thành phần sai số thì sai số xác định hiệu pha dẫn đến tổng sai số đo dài khoảng cách của trạm quét laser mặt đất là lớn nhất. Sai số mf do sự không ổn định của tần số và pha chuẩn cùng một tính chất. Với sự thay đổi mềm mại tần số của máy quét laser, mf chủ yếu sẽ phụ thuộc vào phương pháp đo pha. Sai số đo pha gồm cả sai số ngẫu nhiên và hệ thống do lắp đặt tần số về chuẩn và do sự chậm trễ trôi tần số của bộ tạo tần số.

Thực tế theo công thức (2.16) hai thành phần sai số đầu không phụ thuộc vào khoảng cách, hai thành phần sai số sau ảnh hưởng tỷ lệ thuận với khoảng cách đo. Vì vậy sai số trung phương đo dài khoảng cách trên trạm quét laser bằng phương pháp đo pha cũng như đo xung có thể biểu thị qua cơng thức [65].

= a + bR (2.17)

Ở đây a và b là các hệ số thực nghiệm trên cơ sở đo độ dài khoảng cách theo chuẩn kiểm định. Mỗi thiết bị đo có giá trị riêng kèm theo. Khi đo khoảng cách khơng

xa bằng đo pha thì các sai số đếm hiệu pha, sai số tần số, tốc độ truyền sóng điện từ giao động trong khí quyển hầu như rất nhỏ khơng đáng kể.

Độ chính xác đo dài khoảng cách và đo góc của trạm quét laser phụ thuộc vào nhiều yếu tố nêu trên, ngoài ra trong hệ thống thiết bị qt cịn lắp đặt hệ điều khiển

 Sự khơng trùng quay trục đứng thiết bị các trục quay của lăng kính qt;  Sự khơng trùng quay trục đứng thiết bị với véc tơ lan truyền của tia laser;  Sự khơng trùng trục quay lăng kính quét với véc tơ lan truyền của tia laser;  Sai số của trục ngang;

 Sai số đĩa chia độ góc đứng;  Sai số đĩa chia độ góc ngang.

Trong chương trình xử lý hệ số tỷ lệ b và sai số hiệu chỉnh thiết bị tiến hành bằng hai cách: Cách thứ nhất khi xác định riêng các tham số trong quá trình kiểm định, các số hiệu chỉnh được khử vào các trị đo. Cách thứ hai đưa các số hiệu chỉnh vào cạnh đo, tổng ảnh hưởng của các tham số kiểm định phụ thuộc vào khoảng cách cụ thể đo. Cách thứ hai xử lý sai số hệ thống kết quả đo thông dụng và phổ biến hơn bởi khoảng cách đo bằng quét laser biến động từ 1 đến 1200 mét. Trong khoảng đó cơng suất tín hiệu ảnh hưởng rất lớn đến khả năng phản xạ của các đối tượng quét. Vì vậy trường hợp khi bộ thu bức xạ nhận được tín hiệu q mạnh có thể dẫn đến hỏng thiết bị. Khắc phục hiện tượng trên khi quét thường đặt trước bộ thu thiết bị làm giảm cơng suất tín hiệu một cách giả tạo, càng gần đối tượng quét càng cần làm yếu cơng suất nhận tín hiệu, việc này sẽ dẫn đến biến dạng hình dạng đối tượng địa vật quét. Kết quả này sẽ gây khó cho việc hiệu chỉnh theo cách thứ nhất.

Một yếu tố nữa ảnh hưởng đến kết quả đo góc và đo cạnh là sự khơng đồng thời cùng lúc (tức thời) ghi trị đo R, α, θ trên trạm quét laser mặt đất. Mỗi trị đo R, α, θ, khi ghi lại chúng phải qua một khoảng TR, Tα, Tθ. Những sai số do ghi không tức thời trị đo được thể hiện theo hàm sau:

t – là thời gian làm việc quét kể từ thời điểm phóng tia quét.

Các sai số do ghi khơng tức thời khơng thể xác định trong q trình xử lý kết quả quét laser mặt đất. Cách duy nhất xử lý các sai số đó là TR, = Tα = Tθ ngay khi lắp ráp kiểm định thiết bị.

Các máy quét hãng Riegl, Leica, Zoller + Frohlich và các hãng khác khi quét laser các đối tượng quét theo hướng nằm ngang và hướng đứng sử dụng đầu quang học và lăng kính quay liên tục. Trong q trình qt nguồn laser gửi tín hiệu đến lăng kính và phản xạ tia tới đối tượng địa vật, từ địa vật tia laser quay trở lại bộ thu. Trong thời gian tín hiệu tia laser phát đi đến đối tượng và quay trở lại đầu quang học

Một phần của tài liệu Toàn văn LATS_Ngô Sỹ Cường (Trang 58)

Tải bản đầy đủ (DOC)

(167 trang)
w