Kết luật chương 5

Một phần của tài liệu (Luận án tiến sĩ) Phát triển các thuật toán thông minh điều khiển chuyển động của hệ thống robot dạng tay máy đôi (Trang 121 - 150)

Trong chương này, luận án đã trình bày chi tiết xây dựng thực nghiệm của hệ thống tay máy đôi – đối tượng.

Luận án đã mô phỏng và thực nghiệm được thuật toán điều khiển tựa mô hình cho điều khiển hỗn hợp lực, vị trí và hướng của đối tượng với hệ tay máy đôi, mỗi tay máy có hai bậc tự do và thu được một số kết quả:

- Kết quả thực nghiệm thu được quỹ đạo chuyển động theo trục x của đối tượng đã bám với quỹ đạo đặt với độ quá điều chỉnh bằng không và sai lệch tĩnh nhỏ 0,5%, kết quả chi tiết trong các Hình 5.16- Hình 5.19 khi vị trí theo trục y của đối tượng được giữ cố định.

- Kết quả thực nghiệm thu được quỹ đạo chuyển động theo trục y của đối tượng đã bám với quỹ đạo đặt với độ quá điều chỉnh bằng không và sai lệch tĩnh

nhỏ 2%, kết quả chi tiết trong các Hình 5.20 – Hình 5.22, khi vị trí theo trục x của đối tượng được giữ cố định.

- Kết quả thực nghiệm thu được quỹ đạo hướng chuyển động của đối tượng đã bám với quỹ đạo đặt với độ quá điều chỉnh nhỏ 2% và sai lệch tĩnh nhỏ 2%, kết quả chi tiết trong Hình 5.23– Hình 5.24.

- Khi thực nghiệm bộ điều khiển hỗn hợp lực, vị trí và hướng thì kết quả thực nghiện thu được quỹ đạo chuyển động vị trí theo các trục, quỹ đạo hướng chuyển động của đối tượng cũng đã bám với quỹ đạo đặt với độ quá điều chỉnh nhỏ dưới 2,5% và sai lệch tĩnh nhỏ dưới 2,5%. Kết quả chi tiết trong Hình 5.25 - Hình 5.30.

Các kết quả mô phỏng và thực nghiệm đều cho thấy đối tượng được giữ ổn định tại vị trí cân bằng, chi tiết trong Hình 5.3 – Hình 5.13, Hình 5.17 – Hình 5.19, Hình 5.20b – Hình 5.22, Hình 5.24 và Hình 5.25b– Hình 5.30b.

Các kết quả mô phỏng và thực nghiêm cho hệ thống cho thấy kết quả mô phỏng và thực nghiệm có tính tương đồng. Qua đó thấy được rằng thuật toán điều khiển tựa mô hình đã đề xuất trong Chương 3 làm việc tốt và ổn định. Đây là cơ sở để thấy rằng các thuật toán mà luận án đề xuất trong Chương 3, Chương 4 có tính khả thi khi đưa vào hệ thống thực tế.

KẾT LUẬN CHUNG CỦA LUẬN ÁN

Trong nội dung luận án đã giải quyết đầy đủ nhiệm vụ đặt ra nghiên cứu: Trước tiên dựa vào đặc điểm của hệ tay máy đôi phối hợp chuyển động, từ đó xây dựng mô hình động lực học của hệ thống nghiên cứu.

Xây dựng các thuật toán điều khiển cơ bản, bộ quan sát lực cho hệ thống với giả định rõ mô hình động lực học của hệ thống. Các kết quả mô phỏng có được cho thấy bộ điều khiển, bộ quan sát được thiết kế cho chất lượng tốt, làm việc ổn định.

Các thuật toán điều khiển nâng cao, bộ quan sát thông minh được xây dựng đã giải quyết được vấn đề mô hình bất định của hệ thống và không cần sử dụng cảm biến đo một số trạng thái của hệ thống. Các kết quả có được qua mô phỏng đã cho thấy bộ điều khiển và bộ quan sát làm việc tốt.

Hệ thống thực nghiệm đã được xây dựng nhằm thử nghiệm một số thuật toán đề xuất. Các kết quả thực nghiệm với thuật toán điều khiển tựa mô hình thu được tương đồng với kết quả mô phỏng. Điều này cho thấy tính đúng đắn và khả năng ứng dụng thực tế của các thuật toán đề xuất.

Những đóng góp của luận án:

1. Xây dựng bộ ước lượng lực tiếp xúc giữa các tay máy và đối tượng xét tới các điều kiện mô hình khác nhau: mô hình giả định rõ và mô hình bất định. Sử dụng bộ quan sát GPI với mô hình giả định rõ, và luật cập nhật của Li-Slotine đối với mô hình bất định

2. Phát triển bộ điều khiển thích nghi vị trí và điều khiển thích nghi lai lực/ vị trí trên cơ sở bù thành phần bất định của hệ thống. Luật điều khiển thích nghi được xây dựng bằng sử mạng noron RBF. Lực tiếp xúc được xác định bằng bộ ước lượng lực đã đề xuất.

3. Phát triển bộ quan sát thích nghi sử dụng mạng noron RBF và thiết kế bộ điều khiển thích nghi lai lực/vị trí cho hệ tay máy đôi - đối tượng trên cơ sở bộ quan sát đề xuất.

Các kết quả nghiên cứu về lý thuyết đã được kiểm chứng một phần trên mô hình thực nghiệm. Đó là cơ sở để thấy rằng các thuật toán mà luận án đề xuất có tính khả thi khi đưa vào hệ thống thực tế.

Hướng phát triển của luận án:

- Xây dựng lại hệ thống cơ khí của tay máy đôi nhằm linh hoạt hơn và hoạt động trong không gian ba chiều. Từ đó thực nghiệm các thuật toán còn lại mà luận án đề xuất: điều khiển thích nghi vị trí, điều khiển thích nghi lai lực / vị trí, điều khiển thích nghi lai lực/vị trí dựa trên bộ quan sát thích nghi noron.

- Phát triển các thuật toán điều khiển cho hệ tay máy đôi phối hợp chuyển động đối tượng trong điều kiện vị trí cuối không tĩnh.

DANH MỤC CÁC CÔNG TRÌNH ĐÃ CÔNG BỐ CỦA LUẬN ÁN

1. Lưu Thị Huế, Nguyễn Phạm Thục Anh, “Ứng dụng bộ quan sát lực trong

điều khiển lực của tay máy đôi”, Chuyên san Đo lường, Điều khiển và Tự

động hóa, quyển 21, số 2, pp.19-25, ISSN 1859-0551, 2018.

2. Nguyen Pham Thuc Anh, Luu Thi Hue, “Using force estimator to control

a dual-arm robot in manipulating an object ”, VJST 2019 Vietnam – Japan

Science And Technology Symposium, Ha Noi, pp.32-37, 2019.

3. Luu Thi Hue, Nguyen Pham Thuc Anh, Duong Minh Duc, “Adaptive force/ position control for dual-arm systembased on neural network ra-

dial basis function without using a force sensor”, Journal of Science and

Technology - DaNang University, vol.18, no.12.1, pp.1-7, ISSN 1859-1531, 2020.

4. Luu Thi Hue, Nguyen Pham Thuc Anh, Duong Minh Duc, “Adaptive Hybrid Force/Position Control Using Neuro-Adaptive Observer For Dual-

Arm Robot”, International Review of Automatic Control (I.RE.A.CO.),

vol.13, no.6, pp.313-328, ISSN 1974-6059, https://doi.org/10.15866/ireaco. v13i6.20017 (Scopus-Q3), 2020.

5. Luu Thi Hue, Nguyen Pham Thuc Anh, “Adaptive Control for Dual-Arm

Robotic System Based on Radial Basis Function Neural Network”, JST:

Smart Systems and Devices, vol. 1, no.1, May 2021, pp. 50-58, ISSN: 2734- 9373, 2021.

TÀI LIỆU THAM KHẢO

[1] D. Surdilovic, Y. Yakut, T-M. Nguyen, X. B. Pham, A. Vick, R. Martin- Martin, "Compliance control with dual-arm humanoid robots: Design,

planning and programming," 2010 10th IEEE-RAS International Confer-

ence on Humanoid Robots, pp. 275-281, Dec. 2010.

[2] Kimon P. Valavanis, George N. Saridis, Intelligent robotic systems: theory,

design and applications. Springer Science & Business Media, 2012.

[3] Guoqiang Hu, Wee Peng Tay and Yonggang Wen, "Cloud robotics: architec-

ture, challenges and applications," IEEE network, vol. 26, no. 3, pp. 21-28,

2012.

[4] Mads Hvilshøj, Simon Bøgh, Oluf Skov Nielsen and Ole Madsen, "Au- tonomous industrial mobile manipulation (AIMM): past, present and fu-

ture," Industrial Robot: An International Journal, 2012.

[5] J. Fink, A. Ribeiro and V. Kumar, "Robust control for mobility and wireless communication in cyber–physical systems with application to robot teams,"

Proceedings of the IEEE, vol. 100, no. 1, pp. 164-178, 2011.

[6] Christian Smith, Yiannis Karayiannidis, Lazaros Nalpantidis, Xavi Gratal, Peng Qi, Dimos V. Dimarogonas, Danica Kragic, " Dual arm manipulation-

a survey," Robotics and Autonomous Systems, vol. 60, no. 10, pp. 1340-

1353, 2012.

[7] Erico Guizzo and Travis Deyle, "Robotics trends for 2012," IEEE Robotics and Automation Magazine, vol. 19, no. 1, pp. 119-123, 2012.

[8] Hiroyuki Nakai, Minori Yamataka, Toru Kuga, Sachiko Kuge, Hiroyuki Tadano,Hidenobu Nakanishi, Masanobu Furukawa and Hideshi Ohtsuka

"Development of dual-arm robot with multi-fingered hands," in ROMAN

2006-The 15th IEEE International Symposium on Robot and Human Inter- active Communication, 2006, pp. 208-213: IEEE.

[9] J. Kr¨uger, G. Schreck and D. Surdilovic, "Dual arm robot for flexible and

cooperative assembly," CIRP Annals, vol. 60, no. 1, pp. 5-8, 2011.

[10] Richard Bloss, "Robotics innovations at the 2009 assembly technology

expo," Industrial Robot: An International Journal, 2010.

[11] Manuel Bandala, Craig West, Stephen Monk, Allahyar Montazeri and C. James Taylor, "Vision-Based Assisted Tele-Operation of a Dual-Arm Hy- draulically Actuated Robot for Pipe Cutting and Grasping in Nuclear En-

vironments ," Robotics, vol. 8, no. 2, pp. 1-24, 2019.

[12] K. Yano, Y. Maruyama, K. Morita and M. Nakashima, "Development of

Hình 19. Sơ đồ khối quỹ đạo.

Hình 20. Sơ đồ khối tín hiệu phản hồi.

8) Code dùng trong thực nghiệm 8.1 Kalman function

function [X_k, P_k, K] = Kalman(X_mea, P_old, t , X_k_old) %#codegen

dt = 7e-4; A = [1,0;0,1];

B = [dt;0]; U = X_mea(2); if abs(U) <= 1.5 U = 0; end Error_theta = 2; Error_dtheta = 13; H = [1,0;0,1]; R = [0.02ˆ2,0;0,0.1ˆ2]; Q = [Error_thetaˆ2,0;0,Error_dthetaˆ2]; I = [1,0;0,1]; if t == 0

P_old= [Error_thetaˆ2,Error_theta*Error_dtheta; Error_theta*Error_dtheta,Error_dthetaˆ2]; X_k_old = X_mea; end X_kp = A*X_k_old + B*U; P_kp = A*P_old*(A’)+Q; P_kp(1,2) = 0; P_kp(2,1) = 0; K = (P_kp*H); mauso_K = (H*P_kp*(H’)+R); mauso_K( mauso_K) = 1; K = K./mauso_K; K(1,1) = 0.01; X_k = X_kp + K*(X_mea-H*X_kp); P_k = (I - K*H)*P_kp; End

8.2 Mã code trong khối u1 control

function out = u1_control(u); global lv a l1 l2 r2 r1

m1=1.51; m2=0.85; l1=0.4; l2=0.3; a=0.12;

M=0.2; lv =0.095; b=0.1; g=9.8; r1=0.02; r2=0.02; q11=u(1); dq11=u(2); q12=u(3); dq12=u(4);

q21=u(5); dq21=u(6); q22=u(7); dq22=u(8)

Kv1=u(9); Kv2=u(10); gamax=u(11); gamay = u(12) anphaf=u(13); betaf=u(14);

xd=u(15); yd=u(16); thetad=u(17); fd=u(18); theta=u(19); Y1=0; Y2=0; x1= l1*cos(q11)+l2*cos(q11+q12); y1= l1*sin(q11)+l2*sin(q11+q12); x2= a+l1*cos(q21)+l2*cos(q21+q22); y2= l1*sin(q21)+l2*sin(q21+q22); xa=(x1+x2)/2+(Y1+Y2)/2*sin(thetad); ya=(y1+y2)/2-(Y1+Y2)/2*cos(thetad); J11 = -l1*sin(q11)-l2*sin(q11+q12); J12 = -l2*sin(q11+q12);

J21 = l1*cos(q11)+l2*cos(q11+q12); J22 =l2*cos(q11+q12); J1 = [J11 J12 ; J21 J22]; dq1=[dq11; dq12]; dx1=[-l1*sin(q11)-l2*sin(q11+q12); -l2*sin(q11+q12)]; dy1=[l1*cos(q11)+l2*cos(q11+q12); l2*cos(q11+q12)]; u1f=J1’*[cos(theta);sin(theta)]*fd-Kv1*dq1 +1/lv*J1’*[sin(theta);-cos(theta)]*fd*(Y1-Y2); u1the=(betaf*(thetad-theta)/(lv-r1-r2))* (J1’*[sin(theta);-cos(theta)]-r1*[1;1]); u1x= gamax*(r1*[1;1]*sin(thetad)-dx1)*(xa-xd); u1y= gamay*(-r1*[1;1]*cos(thetad)-dy1)*(ya-yd); u1=u1f; u1=u1f+u1the; u1=u1f+u1x; u1=u1f+u1y; u1=u1f+u1the+u1x; u1=u1f+u1the+u1y; u1=u1f+u1x+u1y; out=u1;

8.3 Mã code trong khối u2 control

function out = u2_control(u);

m1=1.51; m2=0.85; l1=0.4; l2=0.3; a=0.12;

M=0.2; lv =0.095; b=0.1; g=9.8; r1=0.02; r2=0.02; q11=u(1); dq11=u(2); q12=u(3); dq12=u(4);

q21=u(5); dq21=u(6); q22=u(7); dq22=u(8)

Kv1=u(9); Kv2=u(10); gamax=u(11); gamay = u(12) anphaf=u(13); betaf=u(14);

xd=u(15); yd=u(16); thetad=u(17); fd=u(18); theta=u(19); Y1=0; Y2=0; x1= l1*cos(q11)+l2*cos(q11+q12); y1= l1*sin(q11)+l2*sin(q11+q12); x2= a+l1*cos(q21)+l2*cos(q21+q22); y2= l1*sin(q21)+l2*sin(q21+q22); xa=(x1+x2)/2+(Y1+Y2)/2*sin(thetad); ya=(y1+y2)/2-(Y1+Y2)/2*cos(thetad); J11 = -l1*sin(q21)-l2*sin(q21+q22); J12 = -l2*sin(q21+q22); J21= l1*cos(q21)+l2*cos(q21+q22); J22= l2*cos(q12+q22); J2 = [J11 J12; J21 J22]; dq2=[dq21; dq22]; dx2=[-l1*sin(q21)-l2*sin(q21+q22); -l2*sin(q21+q22)]; dy2=[l1*cos(q21)+l2*cos(q21+q22); l2*cos(q21+q22)];

u2f=-J2’*[cos(theta);sin(theta)]*fd-Kv2*dq2 -1/lv*J2’*[sin(theta);-cos(theta)]*fd*(Y1-Y2); u2the=-(betaf*(thetad-theta)/(lv-r1-r2))* (J2’*[sin(theta);-cos(theta)]+r2*[1;1]); ux2= gamax*(-r2*[1;1]*sin(thetad)-dx2)*(xa-xd); uy2= gamay*(r2*[1;1]*cos(thetad)-dy2)*(ya-yd); u2=u2f; u2=u2f+u2the; u2=u2f+u2x; u2=u2f+u2y; u2=u2f+u2the+u2x; u2=u2f+u2the+u2y; u2=u2f+u2x+u2y; out=[u2;xa;ya];

8.4 Mã code quỹ đạo đặt

a) Hàm x_d

function out = x_dat(u) t = u(1);

T0=25 Tf = 3;

x_f = u(3); %vi tri cuoi x0 = u(2); % vi tri dau a0=x0; a1 = 0; a2 = (x_f-x0)*3/Tfˆ2; a3 = -2/Tfˆ3*(x_f-x0); if t <=T0 x_d = x0; elseif t> T0 && t <= (T0+Tf)

x_d = a3*(t-T0)ˆ3 + a2*(t-T0)ˆ2+ a1*(t-T0) + a0 ; else

x_d = x_f; end

out = x_d; b) Hàm y_d

function out = y_dat(u) t = u(1);

T0=25; Tf = 3;

y_f = u(3); %vi tri cuoi y0 = u(2); % vi tri dau a0=y0;

a1 = 0;

a2 = (y_f-y0)*3/Tfˆ2; a3 = -2/Tfˆ3*(y_f-y0); if t <=T0

y_d = y0;

elseif t> T0 && t <= (T0+Tf)

y_d = a3*(t-T0)ˆ3 + a2*(t-T0)ˆ2+ a1*(t-T0) + a0 ; else

y_d = y_f; end

out = y_d;

c) Hàm theta_d

function out = theta_dat(u) t = u(1);

T0=25; Tf = 3;

theta_f = u(3); %vi tri cuoi theta0 = u(2); % vi tri dau a0=theta0; a1 = 0; a2 = (theta_f-theta0)*3/Tfˆ2; a3 = -2/Tfˆ3*(theta_f-theta0); if t <=T0 theta_d = theta0; elseif t> T0 && t <= (T0+Tf)

theta_d = a3*(t-T0)ˆ3 + a2*(t-T0)ˆ2+ a1*(t-T0) + a0 ; else

theta_d = theta_f; end

Một phần của tài liệu (Luận án tiến sĩ) Phát triển các thuật toán thông minh điều khiển chuyển động của hệ thống robot dạng tay máy đôi (Trang 121 - 150)

Tải bản đầy đủ (PDF)

(150 trang)