V ận tốc ánh sáng không phụ thuộc vào trạng thái chuyển động của
2.3.4 Sự chậm lại của thời gian
Giả sử 2 con tàu chuyển động theo hai hướng gặp nhau với vận tốc không đổi, coi tàu 1 đứng yên K còn tàu kia chuyển động K’. Khi con tàu K’ đi ngang qua con tàu K thì một hành khách trong K’ chiếu tia sáng từ sàn lên một trần theo phương thẳng đứng (hình a). Nhưng đối với hành khách trong con tàu K thì sẽ thấy tia sáng không đi theo đường thẳng mà đi theo đường gấp khúc (hình b).
Để tìm vận tốc ánh sáng cả hai hành khách đều lấy quãng đường đi của hai tia sáng chia cho thời gian mà tia sáng đã đi, tức là khoảng thời gian giữa hai sự kiện: lúc bắt đầu chiếu tia sáng và lúc tia sáng bắt đầu quay trở lại gặp sàn tàu.
Đối với hành khách trong K sẽ thấy đường đi của tia sáng dài hơn so với đường đi trong K’. Nhưng theo tiên đề 2 của Einstein thì vận tốc ánh sáng là một đại lượng bất biến. Vì vậy để thoả mãn tiên đề đó thì thời gian mà tia sáng đã đi đối với hành khách trong K phải lớn hơn đối với hành khách trong K’. Nói cách khác nếu đo thới gian giữa hai sự kiện nói trên
bằng đồng hồ trong hệ K’ ta sẽ được số đo nhỏ hơn số đo trong hệ K. Điều đó nghĩa là thời gian trôi đi trong hệ chuyển động K’ chậm hơn so với hệ đứng yên K. Vậy thời gian hai hệ K và K’ có quan hệ như thế nào? Ta sẽ đi tìm hiểu.
Giả sử có một chiếc đồng hồ đặt tại x’ trong hệ K’. Chiếc đồng hồ này ghi lại 2 thời điểm xảy ra hai sự kiên tại chính x’. Sự kiện 1 xảy ra lúc t’1 và sự kiện 2 xảy ra lúc t’2. Theo công thức biến đổi Lorentz ta có:
t1 = (t’1 + 2 c v x’) (2.3.11) t2 = (t’2 + 2 c v x’) Từ (2.3.11) ta được: t2 - t1= (t’2 - t’1)
t’2 - t’1 là khoảng thời gian giữa hai sự kiện xảy ra trong hệ K’ được đo bằng đồng hồ trong hệ K’. Và gọi đó là thời gian riêng 0 của hệ K’. Vì t1, t2 là thời điểm trong hệ K ứng với thời điểm t’1, t’2 trong hệ K’. Do đó, = t2 - t1
là khoảng thời gian giữa 2 sự kiện được đo bằng đồng hồ trong hệ K. Vậy = 0. Do > 1 suy ra 0 <
Số đo của đồng hồ trong hệ K’ nhỏ hơn số đo của đồng hồ trong hệ K hay nói cách khác đồng hồ trong hệ chuyển động chạy chậm hơn đồng hồ trong hệ đứng yên.
Như vậy thời gian không phải là tuyệt đối, là chung cho toàn vũ trụ như Newton đã nói mà ứng với mỗi hệ quy chiếu có thời gian riêng của mình.
Theo thuyết tương đối Einstein không những đồng thời của thời gian không phải là tuyệt đối mà trật tự thời gian cũng không phải là tuyệt đối. Ta xét ví dụ sau:
Giả sử hai sự kiện cùng xảy ra trong hệ K, sự kiện 1 xảy ra lúc t1 tại thời điểm x1, sự kiện 2 xảy ra lúc t2 tại thời điểm x2.
Theo công thức biến đổi Lorentz ta có: t’1 = (t1 - 2 c v x1) (2.3.12) t’2 = (t2 - 2 c v x2) (2.3.13) Từ (2.3.12) và (2.3.13) ta có t’2 - t’1 = (t2 - t1)(1- 2 c v a) (2.3.14)
Nếu sự kiện 1 là viên đạn bắn ra khỏi nòng súng, sự kiện 2 là viên đạn đập vào bia thì 1 2 1 2 t t x x
chính là vận tốc trung bình của viên đạn, nó phải nhỏ
hơn c. Do đó 2 c v a < 1 hay (1 - 2 c v a) > 0.
Từ công thức (2.3.14) suy ra t’2 – t’1 cùng dấu với t2 - t1. Nghĩa là trong hệ K sự kiện 2 xảy ra sau sự kiện 1 thì trong hệ K’ cũng thấy sự kiện 2 xảy ra sau sự kiện 1. Hai sự kiện này có mối liên hệ nhân quả, sự kiên 1 là nguyên nhân sự kiện 2 là kết quả.
Nếu sự kiện 1 là bắt đầu buổi hoà nhạc, còn sự kiện 2 là một học sinh giải xong bài toán. Hai sự kiện này không có liên quan gì với nhau nên nó không có điều kiện ràng buộc đối với a. Do đó trong trường hợp này có thể
2c c v a > 1 => (1- 2 c v
a) < 0. Dẫn đến t’2 – t’1 khác dấu với t2 - t1 nghĩa là trong hệ K ta thấy sự kiện 2 xảy ra sau sự kiện 1 thì trong hệ K’ ta lại thấy sự kiện 2 xảy ra trước sự kiện 1. Như vậy trật tự thời gian trước sau có tính tương đối.
Với sự ra đời của thuyết tương đối Einstein các mâu thuẫn nội tại trong lí thuyết, các kết quả trong thí nghiệm đã được giả quyết: Hiện tượng tinh sai, thí nghiệm Fizaeu, thí nghiệm Michelson-Moriley. Bây giờ ta sẽ xét một số đại lượng trong thuyết tương đối.
Một trong những hệ quả quan trọng của thuyết tương đối hẹp là khối lượng của một vật biến đổi theo vận tốc.