Hướng nghiên cứu tiếp theo

Một phần của tài liệu Áp dụng thuật toán bầy đàn và chế độ quan sát trượt để tìm điểm công suất cực đại cho tấm pin năng lượng mặt trời trong điều kiện bóng mờ một phần luận văn thạc sĩ (Trang 60 - 66)

Triển khai nghiên cứu thuật toán bầy đàn và bộ điều khiển trượt (θ-MKH- SMC) trên mô hình thực tế để tìm điểm cực đại trên hệ thống PV.

Dựa theo kết quả đã đạt được tiếp tục nghiên cứu thuật toán để tăng hiệu suất cao hơn khi tìm điểm cực đại trên hệ thống PV trong các điều kiện thời tiết khác nhau nhất là các tấm pin bị bóng che một phần.

[1] Bui Van Hien, Truong Viet Anh, Quach Thanh Hai (2020), “Optimization of the maximum power point of photovoltaic working under partial shading

conditions”. Science & Technology Development Journal - Engineering and Technology, 3(1), 326-338. https //doi.org/10.32508/stdjet.v3i1.544

[2] Trương Việt Anh, Nguyễn Thanh Thuận (2012), “Tìm điểm công suất cực đại của pin mặt trời đáp ứng các điều kiện môi trường”.

[3] Tran, T., & Truong, A. (2012), “MPPT voltage regulating in three-phase grid-connected photovoltaic system”. Science and Technology Development Journal, 15(2), 50-61. https //doi.org/10.32508/stdj.v15i2.1790

[4] Trương, V. A., Huỳnh, Q. M., & Võ, H. T. (2020) , “Design of a MPPT controller for permanent magnet synchronous generator driven wind turbine ”.

Science & Technology Development Journal - Engineering and Technology, 2(4), 251-257. https //doi.org/10.32508/stdjet.v2i4.440

[5] Lương Xuân Trường, Nguyễn Tùng Linh và Trương Việt Anh (2019), “Nâng cao hiệu suất pin năng lượng mặt trời kết hợp với hệ thống bơm tưới nước ”.

Tạp chí Khoa học và Công nghệ - Đại học Công nghiệp Hà Nội, (55), 10 -15

https //dlib.haui.edu.vn/home/handle/123456789/554

[6] Lê Phương Trường, Trần Minh Bằng, Lợi Nguyễn Phúc Ân, Nguyễn Tấn Hòa (2017), “Phân tích kinh tế cho hệ thống điện mặt trời trên mái nối lưới tại Thành phố Thủ Dầu Một, tỉnh Bình Dương”. Số 11(120).2017-Quyển 2; Trang 132-136

[7] Phuong Truong, L.; An Quoc, H.; Tsai, H.-L.; Van Dung, D(2020), “A Method to Estimate and Analyze the Performance of a Grid-Connected Photovoltaic Power Plant”. Energies 2020, 13, 2583 . https //doi.org/10.3390/en13102583

[8] Ahmadi A, Nezhad AE, Siano P, Hredzak B, Saha S(2019), “Information- gap decision theory for robust security-constrained unit commitment of joint renewable energy and gridable vehicles”. IEEE Transactions on Industrial Informatics. 2019;16(5) 3064-75. https //doi.org/10.1109/TII.2019.2908834

[9] Rahimi E, Rabiee A, Aghaei J, Muttaqi KM, Nezhad AE (2013), “On the management of wind power intermittency”. Renewable and Sustainable Energy Reviews. 2013; 28 643-53. https //doi.org/10.1016/j.rser.2013.08.034

[10] Luo L, Abdulkareem SS, Rezvani A, Miveh MR, Samad S, Aljojo N, Pazhoohesh M (2020), “Optimal scheduling of a renewable based microgrid considering photovoltaic system and battery energy storage under uncertainty ”.

Journal of Energy Storage. 2020 Apr 1;28 101306.

https //doi.org/10.1016/j.est.2020.101306

[11] Chen W, Shao Z, Wakil K, Aljojo N, Samad S, Rezvani A (2020), “An efficient day-ahead cost-based generation scheduling of a multi-supply microgrid

[12] Liu C, Abdulkareem SS, Rezvani A, Samad S, Aljojo N, Foong LK, Nishihara K(2020), “Stochastic scheduling of a renewable-based microgrid in the presence of electric vehicles using modified harmony search algorithm with control policies”. Sustainable Cities and Society. 2020 May 3 102183 .

https //doi.org/10.1016/j.scs.2020.102183

[13] Hosseini SM, Rezvani A (2020), “Modeling and simulation to optimize direct power control of DFIG in variable-speed pumped-storage power plant using teaching–learning-based optimization technique”. SOFT COMPUTING. 2020 May 5.

https //doi.org/10.1007/s00500-020-04984-8

[14] Li Y, Mohammed SQ, Nariman GS, Aljojo N, Rezvani A, Dadfar S (2020), “Energy Management of Microgrid Considering Renewable Energy Sources and Electric Vehicles Using the Backtracking Search Optimization Algorithm”. Journal of Energy Resources Technology. 2020 May 1;142(5).

https //doi.org/10.1115/1.4046098

[15] Li Y, Samad S, Ahmed FW, Abdulkareem SS, Hao S, Rezvani A (2020), “Analysis and enhancement of PV efficiency with hybrid MSFLA–FLC MPPT method under different environmental conditions ”. Journal of Cleaner Production. 2020 Jun 16 122195 . https //doi.org/10.1016/j.jclepro.2020.122195

[16] Barzkar A, Hosseini SM (20148), “A novel peak load shaving algorithm via real‐time battery scheduling for residential distributed energy storage systems ”.

International Journal of Energy Research. 2018 Jun 10;42(7) 2400 -16.

https //doi.org/10.1002/er.4010

[17] Hosseini SH, Keymanesh AA (2016), “Design and construction of photovoltaic simulator based on dual-diode model”. Solar Energy. 2016 Nov 1;137 594-607. https //doi.org/10.1016/j.solener.2016.09.001

[18] Farajdadian S, Hosseini SH (2019). “Optimization of fuzzy-based MPPT controller via metaheuristic techniques for stand-alone PV systems”. International Journal of Hydrogen Energy. 2019 Oct 4;44(47) 25457-72.

https //doi.org/10.1016/j.ijhydene.2019.08.037

[19] Dadfar S, Wakil K, Khaksar M, Rezvani A, Miveh MR, Gandomkar M (2019), “Enhanced control strategies for a hybrid battery/photovoltaic system using FGS-PID in grid-connected mode. International journal of hydrogen energy”. 2019 Jun 7;44(29) 14642-60. https //doi.org/10.1016/j.ijhydene.2019.04.174

[20] Rezvani A, Gandomkar M (2016), “Modeling and control of grid connected intelligent hybrid photovoltaic system using new hybrid fuzzy-neural method”. Solar Energy. 2016 Apr 1;127 1-8. https //doi.org/10.1016/j.solener.2016.01.006

Dispatch in Sustainable Power Systems ”. Sustainability. 2020 Jan;12(2) 576.

https //doi.org/10.3390/su12020576

[22] Ibrahim AW, Jin X, Dai X, Sarhan MA, Shafik MB, Zhou H (2019), “Artificial Neural Network Based Maximum Power Point Tracking for PV System ”.

In2019 Chinese Control Conference (CCC) 2019 Jul 27 (pp. 6559 -6564). IEEE.

https //doi.org/10.23919/ChiCC.2019.8865275

[23] Yang B, Yu T, Shu H, Zhu D, Zeng F, Sang Y, Jiang L (2018),

“Perturbation observer based fractional-order PID control of photovoltaics inverters for solar energy harvesting via Yin-Yang-Pair optimization”. Energy Conversion and Management. 2018 Sep 1;171 170-87.

https //doi.org/10.1016/j.enconman.2018.05.097

[24] Yang B, Yu T, Shu H, Zhu D, An N, Sang Y, Jiang L (2018), “Energy reshaping based passive fractional-order PID control design and implementation of a grid-connected PV inverter for MPPT using grouped grey wolf optimizer”. Solar Energy. 2018 Aug 1;170 31-46. https //doi.org/10.1016/j.solener.2018.05.034

[25] Ahmed EM, Aly M, Elmelegi A, Alharbi AG, Ali ZM (2019), “Multifunctional Distributed MPPT Controller for 3P4W Grid-Connected PV Systems in Distribution Network with Unbalanced Loads ”. Energies. 2019 Jan;12(24) 4799. https //doi.org/10.3390/en12244799

[26] Yang B, Yu T, Zhang X, Li H, Shu H, Sang Y, Jiang L (2019), “Dynamic leader based collective intelligence for maximum power point tracking of PV systems affected by partial shading condition”. Energy conversion and management. 2019 Jan 1;179 286-303. https //doi.org/10.1016/j.enconman.2018.10.074

[27] Yang B, Zhong L, Zhang X, Shu H, Yu T, Li H, Jiang L, Sun L (2019), “Novel bio-inspired memetic salp swarm algorithm and application to MPPT for PV systems considering partial shading condition”. Journal of cleaner production. 2019 Apr 1;215 1203-22. https //doi.org/10.1016/j.jclepro.2019.01.150

[28] Zhang X, Li S, He T, Yang B, Yu T, Li H, Jiang L, Sun L (2019), “Memetic reinforcement learning based maximum power point tracking design for PV systems under partial shading condition”. Energy. 2019 May 1;174 1079-90.

https //doi.org/10.1016/j.energy.2019.03.053

[29] Daraban S, Petreus D, Morel C (2014), “A novel MPPT (maximum power point tracking) algorithm based on a modified genetic algorithm specialized on tracking the global maximum power point in photovoltaic systems affected by partial shading”. Energy. 2014 Sep 1;74 374-88.

https //doi.org/10.1016/j.energy.2014.07.001

[30] Sen T, Pragallapati N, Agarwal V, Kumar R (2017), “Global maximum power point tracking of PV arrays under partial shading conditions using a mo dified

[31] Titri S, Larbes C, Toumi KY, Benatchba K (2017), “A new MPPT

controller based on the Ant colony optimization algorithm for Photovoltaic systems under partial shading conditions”. Applied Soft Computing. 2017 Sep 1;58 465-79.

https //doi.org/10.1016/j.asoc.2017.05.017

[32] Ahmed J, Salam Z (2014), “A Maximum Power Point Tracking (MPPT) for PV system using Cuckoo Search with partial shading capability”. Applied Energy. 2014 Apr 15;119 118-30. https //doi.org/10.1016/j.apenergy.2013.12.062

[33] Ahmed J, Salam Z (2014), “A Maximum Power Point Tracking (MPPT) for PV system using Cuckoo Search with partial shading capability”. Applied Energy,

2014 Apr 15;119 118-30. https //doi.org/10.1016/j.apenergy.2013.12.062

[34] Kulaksız and Akkaya (2012), “A genetic algorithm optimized ANN-based MPPT algorithm for a stand-alone PV system with induction motor drive”. Solar Energy 86 (2012) 2366 –2375. https //doi.org/10.1016/j.solener.2012.05.006

[35] Rahul Rawat and Shyam Chandel (2013), “Hill climbing techniques for tracking maximum power point in solar photovoltaic systems - A review”. Special Issue of International Journal of Sustainable Development and Green Economics

(IJSDGE), ISSN No. 2315-4721, V-2, I-1,

2013. https //www.researchgate.net/publication/288128372

[36] Gandomi AH, Alavi AH (2012), “Krill herd a new bio-inspired

optimization algorithm”. Commun Nonlinear Sci Numer Simulat, 2012;17 4831-45.

https //doi.org/10.1016/j.cnsns.2012.05.010

[37] Wang GG, Guo L, Gandomi AH, Hao GS, Wang H (2014), “Chaotic krill herd algorithm”. Information Sciences. 2014;274 17-34.

https //doi.org/10.1016/j.ins.2014.02.123

[38] Wang GG, Gandomi AH, Alavi AH, Hao GS (2014), “Hybrid krill herd algorithm with differential evolution for global numerical optimization”. Neural Computing and Applications. 2014;25(2) 297-308. https //doi.org/10.1007/s00521- 010-0498-x

[39] Wang GG, Gandomi AH, Alavi AH (2014), “An effective krill herd algorithm with migration operator in biogeography-based optimization”. Applied Mathematical Modelling. 2014 May 1;38(9-10) 2454-6.

https //doi.org/10.1016/j.apm.2013.10.052

[40] Fangrui L, Shanxu D, Fei L, Bangyin L, Yong K (2008), “A variable step size INC MPPT method for PV systems”. IEEE Trans Ind Electron.

2008;55(7) 26222628. https //doi.org/10.1109/TIE.2008.920550

[41] Perruquetti W, Barbot JP (2002), Sliding Mode Control in Engineering. New York Marcel Dekker; 2002. https //doi.org/10.1016/S0005-1098(03)00004-9

conference for aeronautics and aerospace sciences (eucass)https //www.researchgate.net/publication/336106673

[43] Ji W, Qiu J, Karimi HR (2019), “Fuzzy-Model-Based Output Feedback Sliding Mode Control for Discrete-Time Uncertain Nonlinear Systems”. IEEE Transactions on Fuzzy Systems. 2019 May 15 .

Thông số PV Công suất đầu ra = 7.3 kW, Hệ số PI trong bộ điều khiển bên lưới KpVdc= 3.7, KiVdc= 6.3, KpId= 5.4, KiId=343, KpIq= 5.4, KiIq= 343.

Phụ lục b

Giá trị tối ưu của các thông số của bộ điều khiển K a= 3.75, Kb=8.1459, Kc=10.157, Kd= 8.6354, Ke=0.2654

Một phần của tài liệu Áp dụng thuật toán bầy đàn và chế độ quan sát trượt để tìm điểm công suất cực đại cho tấm pin năng lượng mặt trời trong điều kiện bóng mờ một phần luận văn thạc sĩ (Trang 60 - 66)

Tải bản đầy đủ (DOCX)

(66 trang)
w