Trong một quá trình tự hồi quy bậc p, số liệu quan trắc tại thời điểm hiện tại yt được tạo ra bởi một tổng trung bình có trọng số của các giá trị quan trắc trong quá khứ tính cho
đến giá trị quan trắc quá khứ thứ p Công thức định nghĩa như sau: AR(1): yt = q1*yt-l + et
AR(2): yt = q1*yt-l +q2*yt-2 + et
---
Trong đó q1; q2; …; qp là các thông số cần phải xác định. et là một nhiễu trắng ngẫu nhiên có dạng Gaussien. Chúng ta cũng có thể thêm vào quá trình này một hằng số mà nó vẫn không ảnh hường đến ưnh chất ngẫu nhiên của chuỗi. Phương trình trên có thể viết dưới dạng đơn giản hơn nhờ vào định nghĩa toán tử lệch pha D như sau:
( 1- q1*D - q2D2 - . . .- qpDp)*yt = et Tính chất:
- Người ta đã chứng minh biểu đồ tương quan đơn của một quá trình AR(P) được mô tả bởi một cấp số nhân có công bội nhô hơn 1 (chuỗi giảm) có dạng:
pk= p-k
- Biểu đồ tương quan riêng phần chi có p số hạng đầu tiên là khác 0.
Các ví dụ sau đây cho phép chúng ta nhận biết mô hình dạng AR dựa trên phân tích biểu đồ tương quan đơn vâ tương quan riêng phần. Xét một mô hình AR(L) có dạng:
yt = 1 + 0 9*yt-l+ et với et là giá trị thặng dư.
Các biểu đồ tương quan của mô hình trên có dạng sau:
Ta thấy giá trị đầu tiên của biểu đồ tương quan riêng phần rất lôn so với các giá trị
còn lại và biểu đồ tương quan đơn có giá trị giảm đần. Đó là biểu thị đặc thù cho phép chúng ta nhận dạng đó là một mô hình AR(L).
Xét một mô hình AR(2) có dạng: yt = 0 9*yt-2+1+ et
Các biểu đồ tương quan của mô hình trên có dạng sau:
Hình 4.4
So với trường hợp trước ta thấy có sự khác nhau. Thay vì giá trị thứ 1 như ví dụ
trước, trường hợp này ta thấy giá trị thứ 2 trong biểu đồ tương quan riêng phần lớn trồi hơn hẳn so với các giá trị còn lại. Trong khi đó tính chất của biểu đồ tương quan đơn cũng giống như trước. Điều này cho phép ta biết đây là một mô hình AR(2). Ta cũng lưu ý thêm với số
hạng AR(1) là không đáng kể.