Ví d映 05: Kh違o sát chuy吋n v鵜 và l詠c tác d映ng và od 亥o"vjgq"8瓜 c 泳ng c栄a

Một phần của tài liệu Phân tích dầm tựa đơn chịu vật thể chuyển động xét đến biến dạng nền và móng (Trang 63 - 79)

S嘘 li羽u kh違q"uƒv"8逢嬰c tham kh違o b荏k"]65̲"pj逢"ucw<

‚ S嘘 li羽u d亥m:

- Chi隠u dài: L= 20m

- O»8wp"8 p"j欝i: E= 2.1011 N/m2. - Mômen quán tính: I=0,048 m4.

- Kh嘘k"n逢嬰pi"vt‒p"3"8挨p"x鵜 chi隠w"f k<" ?3.70324 kg/m. ‚ S嘘 h羽 kh嘘k"n逢嬰ng bao g欝m: - m= 0,1 L (kg). - A瓜 c泳ng lò xo (c栄a v壱t th吋): k0=1,50.106 N/m. - V壱n t嘘c chuy吋p"8瓜ng c栄a v壱t th吋: v=10m/s.

Hình 4.10.Chuyn v 8kあm gia dZo"vjgq"8じ cng ca nn.

Hình 4.11 .Lc tác dng vào dm t vt th chuyあp"8じpi"vjgq"8じ cng ca nn.

‚ Nh壱n xét: 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1x 10 -3 x/L c h u y e n v i (m )

Chuyen diem giua dam theo Kn

Kn=100 EI/L3 Kn=200 EI/L3 Kn=500 EI/L3 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 288 290 292 294 296 298 300 302 x/L L u c F ( K N )

Luc tac dung vao dam theo do cung Kn Kn=100 EI/L3

Kn=200 EI/L3 Kn=500 EI/L3

Kn Ejw{吋p"x鵜"*oo+ F (KN)

100 EL/L3 8.1 300

200 EL/L3 6.8 297

500 EL/L3 5.8 296.1

- A瓜 c泳ng c栄a n隠n càng l噂n thì chuy吋n v鵜 c栄a d亥m càng gi違m. Ak隠u này có th吋 8逢嬰c gi違k"vj ej"pj逢"ucw."mjk"8瓜 c泳ng c栄a n隠n càng l噂n thì chuy吋n v鵜 c栄a d亥m do g嘘i t詠a 8 p"j欝i gây ra s胤 gi違o"x "8瓜 c泳ng t鰻ng th吋 c栄c"u挨"8欝 k院t c医w"v<pi"n‒p0"X·"x壱y, chuy吋n v鵜 c栄a d亥m s胤 gi違m khi s胤 s嘘 n隠n càng l噂n

-A瓜 c泳ng c栄a n隠n càng l噂n, l詠c tác d映ng vào d亥m t瑛 v壱t th吋 chuy吋p"8瓜ng s胤 gi違m. Ak隠w"p {"8逢嬰c gi違k"vj ej"pj逢"ucw0"V衣i m厩i th運k"8k吋m, l詠c tác d映ng vào d亥m t瑛 v壱t th吋 chuy吋p"8瓜ng bao g欝m tr丑pi"n逢嬰ng c栄a v壱t th吋 và l詠c quán tính c栄a v壱t th吋fq"fcq"8瓜ng c栄a v壱t th吋 khi chuy吋p"8瓜ng trên d亥m. Thành ph亥p"swƒp"v pj"p {"8逢嬰c tính thông qua gia t嘘c c栄a v壱t th吋 t衣i m厩k"d逢噂c th運k"ikcp0"Mjk"8瓜 c泳ng c栄a n隠n càng l噂p."fcq"8瓜ng c栄a d亥m gi違o"x "n o"ejq"fcq"8瓜pi"vjgq"rj逢挨pi"8泳ng c栄a v壱t th吋 gi違o"vjgq0"Fq"8„."ikc" t嘘e"vjgq"rj逢挨pi"8泳ng c栄a v壱t th吋 gi違m và làm cho thành ph亥n quán tính tác d映ng vào d亥m gi違m theo.

4.2.3. Ví d映 06: Kh違o sát chuy吋n v鵜 l噂n nh医t c栄a d亥m theo v壱n t嘘c và h羽 s嘘 n隠n.

S嘘 li羽u kh違q"uƒv"8逢嬰c tham kh違o b荏k"]65̲"pj逢"ucw<

‚ S嘘 li羽u d亥m:

- Chi隠u dài: L= 20m

- O»8wp"8 p"j欝i: E= 2.1011 N/m2. - Mômen quán tính: I=0,048 m4.

- Kh嘘k"n逢嬰pi"vt‒p"3"8挨p"x鵜 chi隠w"f k<" ?3.70324

kg/m.

‚ S嘘 h羽 kh嘘k"n逢嬰ng bao g欝m: - m= 0,1 L (kg).

- A瓜 c泳ng lò xo (c栄a v壱t th吋): k0=1,50.106 N/m.

D亥o"8逢嬰c chia thành 20 ph亥n t穎."d逢噂c th運k"ikcp" v?20223u0

‚ Rj逢挨pi"rjƒr"mj違o sát: 泳ng v噂i m厩i thông s嘘 v壱n t嘘c c栄a v壱t th吋 di chuy吋n trên d亥m, ta tìm chuy吋n v鵜 l噂n nh医t c栄a d亥o"v逢挨pi"泳ng v噂i h羽 s嘘 n隠n Kn.

Hình 4.12. Chuyn v ln nht ca dZo"vjgq"8じ cng ca nn và vn tc chuyあp"8じng ca vt th.

‚ Nh壱n xét:

- H羽 s嘘 n隠p"x "fcq"8瓜ng c栄a d亥m t益 l羽 ngh鵜ch nhau.

- Khi v壱t th吋 chuy吋p" 8瓜ng v噂i v壱n t嘘c nh臼 (vø:2"mo1j+, 8逢運ng bi吋u di宇n m嘘i quan h羽 gi英a v壱n t嘘c và chuy吋n v鵜 nh医p nhô nhi隠w0"Fq"8„."e„"vj吋 xem 違pj"j逢荏ng c栄a v壱n t嘘c chuy吋p"8瓜pi"8院n chuy吋n v鵜 c栄a d亥m là khá nhi隠u.

0 20 40 60 80 100 120 140 160 180 5 6 7 8 9 10 11x 10 -3 van toc (Km/h) C h u y e n v i m a x (m )

Chuyen vi max cua dam theo Kn va V

Kn=100 EI/L3

Kn=200 EI/L3

Kn=500 EI/L3

- Khi v壱t th吋 chuy吋p"8瓜ng v噂i v壱n t嘘c l噂n (vœ:2mo1j+."8逢運ng bi吋u di宇n quan h羽 gi英a chuy吋n v鵜 c栄a d亥m và v壱n t嘘c n "8逢運pi"eqpi"vt挨p."i亥p"pj逢"n "8逢運ng th鰯ng. . Do 8„."e„"vj吋 xem 違pj"j逢荏ng c栄a v壱n t嘘c chuy吋p"8瓜pi"8院n chuy吋n v鵜 c栄a d亥m là tuy院n tính.

- Kh違o sát v=80km/h, ta th医y r茨ng, chuy吋n v鵜 c栄a d亥m là nh臼 nh医v0"Swc"8„."e„"vj吋 nói t欝n t衣i m瓜t giá tr鵜 v壱n t嘘c t噂i h衣n làm cho d亥m chuy吋n v鵜 nh臼 nh医t. Khi chuy吋n 8瓜ng v噂i v壱n t嘘c l噂n ho員c nh臼 j挨p"x壱n t嘘c này thì chuy吋n v鵜 c栄a d亥m s胤 l噂p"j挨p0"Aây là m瓜v"8k隠u m噂i trong quá trình kh違q"uƒv"d k"vqƒp"8瓜pi"x "e„"#"pij c"vtqpi"swƒ"vt·pj" khai thác, s穎 d映ng.

4.2.4. Ví d映 07: Kh違q"uƒv"8瓜 võng l噂n nh医t c栄a d亥o"vjgq"8瓜 c泳ng c栄a n隠n (Kn) và h羽 kh嘘k"n逢嬰ng (Ko).

S嘘 li羽u kh違q"uƒv"8逢嬰c tham kh違o b荏k"]65̲"pj逢"ucw<

‚ S嘘 li羽u d亥m:

- Chi隠u dài: L= 20m

- O»8wp"8 p"j欝i: E= 2.1011 N/m2. - Mômen quán tính: I=0,048 m4.

- Kh嘘k"n逢嬰pi"vt‒p"3"8挨p"x鵜 chi隠w"f k<" ?3.70324 kg/m. ‚ S嘘 h羽 kh嘘k"n逢嬰ng bao g欝m: - m= 0,1 L (kg). - A瓜 c泳ng lò xo (c栄a v壱t th吋): k0=1,50.106 N/m - V壱n t嘘c chuy吋p"8瓜ng: v=20m/s.

D亥o"8逢嬰c chia thành 20 ph亥n t穎."d逢噂c th運k"ikcp" v?20223u0

‚ Rj逢挨pi"rjƒr"mj違o sát: 泳ng v噂i m厩i thông s嘘 8瓜 c泳pi"8 p"j欝i c栄a v壱t th吋 di chuy吋n trên d亥m (Ko), ta tìm chuy吋n v鵜 l噂n nh医t c栄a d亥o"v逢挨pi"泳ng v噂i h羽 s嘘 n隠n Kn.

Hình 4.13. Chuyn v ln nht ca dZo"vjgq"8じ cng ca nn và vn tc chuyあp"8じng ca vt th.

‚ Nh壱n xét:

- H羽 s嘘 n隠p"x "fcq"8瓜ng c栄a d亥m t益 l羽 ngh鵜ch nhau.

- Fcq"8瓜ng c栄a d亥m là m瓜t hàm c栄c"8瓜 c泳ng c栄a h羽 kh嘘k"n逢嬰ng. Ta th医y r茨ng, v噂i cùng m瓜v"8瓜 c泳ng n隠n (Kn), s胤 có m瓜t giá tr鵜 Ko làm cho d亥o"fcq"8瓜ng nh臼 nh医t.

- Mjk"8瓜 c泳ng c栄a h羽 kh嘘k"n逢嬰ng càng l噂n, chuy吋n v鵜 c栄a d亥o"e„"zw"j逢噂ng gi違m. Vì v壱{."8瓜 c泳ng c栄a h羽 kh嘘k"n逢嬰pi"8„pi"xck"vt” g亥n gi嘘ng pj逢"o瓜t thi院t b鵜 gi違m ch医n cho k院t c医u d亥m. 0 2 4 6 8 10 12 14 16 x 106 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5x 10 -3 Ko (N/m) C h u y e n v i m a x (m )

Chuyen vi max cua dam theo Kn va Ko voi v=20m/s

Kn=100 EI/L3

Kn=200 EI/L3

Kn=500 EI/L3

EJ姶愛PI"7< KT LUN VÀ KIN NGH 5.1. K院t lu壱n.

- A«"z¤{"f詠pi"8逢嬰c mô hình tính toán d亥m t詠c"8挨p"ej鵜u v壱t th吋 chuy吋p"8瓜ng xét 8院n bi院n d衣ng n隠p"x "o„pi"8吋rj¤p"v ej"8瓜ng l詠c c栄a d亥m.

- A«"vjk院t l壱r"8逢嬰e"rj逢挨pi"vt·pj"xk"rj¤p"fcq"8瓜ng c栄a h羽 th嘘ng g欝m d亥m t詠a trên g嘘k"8 p"j欝i và v壱t th吋 chuy吋p"8瓜ng trên d亥m.

- Xây d詠pi" 8逢嬰c thu壱v" vqƒp" x " ej逢挨pi" vt·pj" 8吋 gi違k" rj逢挨pi" vt·pj" xk" rj¤p" fcq" 8瓜ng c栄a d亥m t詠c"8挨p"ej鵜u v壱t th吋 chuy吋p"8瓜pi"zfiv"8院n bi院n d衣ng n隠p"x "o„pi"vt‒p"e挨" s荏 rj逢挨pi" rjƒr" rj亥n t穎 h英u h衣p." rj逢挨pi" rjƒr" vích phân tr詠c ti院p Newmark b茨ng ngôn ng英 l壱p trình Matlab.

- Trong mô hình d亥m t詠c"8挨p"ej鵜u v壱t th吋 chuy吋p"8瓜pi"zfiv"8院n bi院n d衣ng n隠n và móng, quan h羽 gi英a h羽 s嘘 n隠n và h羽 s嘘 8瓜ng chuy吋n v鵜 là t益 l羽 ngh鵜ch; quan h羽 gi英a v壱n t嘘c và h羽 s嘘8瓜ng chuy吋n v鵜 là t益 l羽 thu壱n.

- V壱n t嘘c di chuy吋n c栄a v壱t th吋 th医p thì 違pj"j逢荏ng nhi隠w"8院p"fcq"8瓜ng l噂n nh医t c栄a d亥m, khi v壱n t嘘c di chuy吋n l噂n thì m嘘i quan h羽 gi英a v壱n t嘘e"x "fcq"8瓜ng l噂n nh医t c栄a d亥m g亥p"pj逢"n "vw{院n tính. T欝n t衣i m瓜t giá tr鵜 v壱n t嘘c t噂i h衣n làm cho chuy吋n v鵜 c栄a d亥m là nh臼 nh医t.

- A瓜 c泳ng liên k院t c栄a v壱t th吋 chuy吋p"8瓜ng có tác d映ng h医p th映fcq"8瓜ng và làm gi違o"fcq"8瓜ng c栄a d亥m.

5.2. Ki院n ngh鵜.

- Rj¤p"v ej"8瓜ng l詠c khi d亥m ch鵜u nhi隠u v壱t th吋 chuy吋p"8瓜ng trên d亥o"8欝ng th運i và ch鵜u nhi隠u tác d映pi"mjƒe"pj逢"8瓜pi"8医vÈ

- Phân v ej"fcq"8瓜ng c栄a d亥m khi v壱t th吋8«"tc"mj臼i d亥m.

TÀI LIU THAM KHO

1. Ladislav Fryba, Vibration of Solid and Structure under Moving Loads, 3rd edition, Telford, 1999.

2. Ladislav Fryba, Dynamics of Railway Bridges, 2nd edition, Telford, 1996. 3. Y.B.Yang, J.D.Yau, J.S.Wu, Vehicle-Bridge interaction dynamics with application to high-speech railways, World Scientific Publishing Co.Pte.Ltd, 2004.

60""A厩 Ki院n Qu嘘e.""N逢挨pi""X<p""J違k.""A瓜ng l詠c h丑c k院t c医w""ÐF{pcoke""qh" uvtwevwtgÑ."PZD"AJSI"42320

5. Ismail Esen, Dynamic response of beam due to an accelerating moving mass using moving finite element approximationg, Mathematical and Computational Applications, Vol.16, No.1, pp 171-182, 2011.

6. Huajiang Ouyang, Moving-load dynamic problems: A tutorial (with a brief overview), Journal of Sound and Vibration 25 (2011) 2039Î2060.

7. FarhadS.Samani, FrancescoPellicano, Vibration reduction on beams subjected to moving loads using linear and nonlinear dynamic absorbers,Journal of Sound and Vibration 325 (2009) 742Î754.

8. C. Bilello, L.A. Bergman, Vibration of damaged beams under a moving mass: theory and experimental validation, Journal of Sound and Vibration 274 (2004) 567Î582.

9. H. P. Lee, Transverse Vibration of a Timoshenko Beam Acted on by an Accelerating Mass, Journal of Sound and Vibration Vol. 47, No. 4, pp. 319-330, 996.

320""N‒"A·pj"J欝ng, Bài gi違pi<"Rj逢挨pi"rjƒr"rj亥n t穎 h英u h衣n, 2010.

11. Ph衣o""A·pj""Dc.""Piw{宇p""V k""Vtwpi.""A瓜ng l詠c h丑c công trình. NXB Xây D詠ng 2010.

340""A厩 Nguy宇p"X<p"X逢挨pi."Rj¤p"v ej"8瓜ng l詠c c亥w"f¤{"x<pi"ej鵜u tác d映ng c栄a t違i tr丑pi"fk"8瓜ng, Lu壱p"x<p"vj衣e"u ."vt逢運pi"AJDM"Vr0"J欝 Chí Minh, 2010.

13. Mesut Simsek, Vibration analysis of a functionally graded beam under a moving mass by using different beam theories, Journal of Sound and Vibration 92 (2010) 904Î917.

14. Ho-Chul Kwon, Man-Cheol Kim, In-Won Lee, Virbration control of brigdes under moving loads, Computers & Structures Vol. 66, No. 4, pp. 473-480, 1998.

15. R. Zarfam, A.R. Khaloo, Vibration control of beams on elastic foundation under a moving vehicle and random lateral excitations, Journal of Sound and Vibration 331 (2012) 1217Î1232.

16. Lu Sun, A closed-form solution of beam on viscoelastic subgrade subjected to moving loads, Computers and Structures 80 (2002) 1Î8.

17. P.Sniady, Vibrations of the beam due to a load moving with stochastic velocity, Probabilistic Engineering Mechanics 16 (2001) 53Î59.

18. N.Azizi, M.M.Saadatpour, Using spectral element method for analyzing continuous beams and bridges subjected to a moving load, Appl. Math.Modell.(2011), doi:10.1016/j.apm.2011.10.019.

19. RayW. Clough, Joseph Penzien, Dynamic of structures, third edition,Computers & Structures, Inc.

20. Fahim Javid, Vibration suppression of straight and curved beams traversed d{" " oqxkpi" " nqcfu." " C" " OcuvgtÓu" " Vjguku." " Wpkxgtukv{" " qh" " Qptario Institute of Technology, 2011.

21. Nguy宇n Ti院p"Ej逢挨pi."Piw{宇n H違i Quang, Tích phân tr詠c ti院r"rj逢挨pi"vt·pj" xk"rj¤p"fcq"8瓜ng c栄a k院t c医w"vjgq"o»"j·pj"8 p"j欝i- d飲q"n#"v逢荏ng.

22. Junping Pu, Peng Liu, Numerical Calculation of Dynamic Response for Multi-Span Non-Uniform Beam Subjected to Moving Mass with Friction,Engineering, 2010, 2, 367-377.

23. Serdar Hügül, Vibration analysis of systems subjected to moving loads by using the finite element method, A Thesis , Dokuz Eylül University, 2005.

24. Zhuchao Ye, Huaihai Chen, Vibration analysis of simply supported beam under moving mass based on moving finite element method, Springer, 2009, 4(4):394-400.

470""A厩 Ki院n Qu嘘c, Nguy宇n Th鵜 Hi隠p"N逢挨pi.""D́k"E»pi"Vj pj."N‒"Hoàng Tu医n, Tr亥n T医n Qu嘘c, S泳c B隠n V壱t Li羽u, Nhà Xu医t B違p"A衣i H丑c Qu嘘c Gia TP H欝 Chí Minh, 2004.

26. Arash Yavari, Mostafa Nouri, Massood Mofid, Discrete element analysis of dynamic response of Temoshenko beams under moving mass, Advances in Engineering Software 33(2002) 143-153.

27. A.Nikkhoo, F.R. Rofooei, M.R. Shadnam, Dynamic behavior and modal control of beams under moving mass, Journal of Sound and Vibration 306 (2007) 712-724.

28. Hasan Bulut, Omer Kelesoglu, Comparing numerical methos of response of beams with moving, Advances in Engineering Soflware 41(2010) 976-980.

29. Czeslaw I. Bajer, Bartlomiej Dyniewicz, Virtual function of the space-time finite element method in moving mass problems, Computers and Structures 87(2009) 444-455.

30. Kam Bakhshandeh, Bahador Sarajam, Boundary conditions effect dynamic behaviour of a uniform straight composite and isotropic beam due to moving force, Asian Journal of Scientific Reseach 1(3):193-202,2008.

530"X "Pj逢"E亥u, Tính k院t c医w"vjgq"rj逢挨pi"rjƒr"rj亥n t穎 h穎u, Nhà Xu医t B違n Xây D詠ng, 2005.

540""N‒"Jq k"U挨p."N‒"Vjcpj"Rjqpi."Ock"A泳e"A«k.""永ng d映pi"rj逢挨pi"rjƒr"rj亥n t穎 h英u h衣n trong tính toán k悦 thu壱t, Nhà Xu医t B違p" A衣i H丑c Qu嘘c Gia TP H欝 Chí Minh, 2008.

33. Klaus-Jurgen Bathe, Finite element procedures, Prentice Hall, Upper Saddle River, New Jersey,1996.

34. Anil K. Chopra, Dynamic of structure theory and application to eathquake engineering, Prentice Hall, 1995.

35. Won Young Yang, Wenwu Cao, Tae Sang Chung, John Morris, Applied numerical method using matlab, A John Wiley & Son, inc, 2005.

36. Yih-Hwang Lin, Vibration analysis of Timoshenko beams traversed by moving loads, Jounrnal of Marine Science and Technology.Vol.2, No1 pp.25-35 (1994).

37. Ho-Chul Kwon, Man-Cheol Kim and In-Won Lee, vibration control of bridges under moving loads, Computers & Structures Vol. 66, No. 4, pp. 473±480, 1998.

38. FarhadS.Samani, FrancescoPellicano, Vibration reduction on beams subjected to moving loads using linear and nonlinear dynamic absorbers, Journal of Sound and Vibration 325 (2009) 742Î754 .

39. A. Garinei, Vibrations of simple beam-like modelled bridge under harmonic moving loads, International Journal of Engineering Science 44 (2006) 778Î787.

40. Gou W.H và Xu Y.L (2000), Direct Assembling matrix method for dynamic

analysis of coupled vehicle Î bridge system, Advance in structural dynamic, Vol.1,

41. Lê Th鵜 Bích Th栄y, Nguy宇n Vi院t Trung, C亥u Bê Tông C嘘v"Vjfir."PZD"AJSI" 2007.

42. Sudhansu Meher, Dynamic Response of a Beam Structure to a Moving Mass Wukpi""ItggpÓu""Hwpevkqp.""C""Vjguku.""Pcvkqpcn""Kpuvkvwvg""qh""Vgejpqnqi{"Tqwtmgnc."" 2012.

43. Yonghong Chen, C.A.Tan, L.A.Bergman, Effects of Boundary flexibility on the Vibration of a continuum with a moving oscillator, Transactions of ASME Vol.124, 10/2002.

44. Dan Stancioiu, Huajiang Ouyang, John E.Mottershead, Simon James, Experimental investigations of a multi-span flexible structure subjected to moving masses, Journal of Sound and Vibration 330 (2011) 2004Î2016.

45. A.Ariaei, S.Ziaei-Rad, M.Ghayour, Vibration analysis of beams with open and breathing cracks subjected to moving masses, Journal of Sound and Vibration 326 (2009) 709Î724.

46. Cristiano Bilello, Lawrence A. Bergman, and Daniel Kuchma, Experimental Investigation of a Small-Scale Bridge Model under a Moving Mass, journal of structural engineering © asce / may 2004 / 799.

47. P-E Austrell, O Dahlblom, J Lindemann, A Olsson, K-G Olsson, K Persson, H Petersson, M Ristinmaa, G Sandberg, P-A Wernberg, calfem A finite element toolbox Version 3.4, Structural Mechanics, LTH, Sweden 2004 .

48. Nguy宇p""A<pi""Rjqpi.""Rj¤p""v ej""f亥o""8挨p""ik違n ch鵜u t違i tr丑pi""8k隠u hòa fk"8瓜pi"zfiv"8院n kh嘘k"n逢嬰ng v壱t chuy吋p"8瓜ng theo lý thuy院t bi院n d衣pi"vt逢嬰t b壱c cao, Lu壱p"x<p"vj衣e"u .""vt逢運pi"AJDM"Vr0"J欝 Chí Minh, 2009.

49. Nguy宇n T医p"E逢運pi."Rj¤p"v ej"fcq"8瓜ng c栄a t医m trên n隠p"8 p""pj噂v"zfiv"8院n kh嘘k"n逢嬰ng c栄a v壱t chuy吋p"8瓜ng, Lu壱p"x<p"vj衣e"u ."vt逢運pi"AJDM"Vr0"J欝 Chí Minh, 2012.

50. Nguy宇n Anh Duy, Phân tích d亥m Timoshenko s穎 d映ng h羽 c違n kh嘘i n逢嬰pi"f逢噂i tác d映ng c栄a t違i tr丑pi""fk"8瓜ng b茨pi""rj逢挨pi"rjƒr"rj亥n t穎 h英u h衣n, Lu壱p"x<p"vj衣e"u ."vt逢運pi"AJDM"Vp. H欝 Chí Minh, 2012.

51. Jia-Jang Wu, Dynamic analysis of an inclined beam due to moving loads, Journal of Sound and Vibration 288 (2005) 107Î131.

52. Raid Karoumi, Response of cable-stayed and suspension bridges to moving vehicles analysis methods and pratical modeling techniques, Doctoral thesis, Departerment of structural engineering Royal Institute of Technology, 1999.

53. Nguy宇n Th院 Vt逢運ng Phong, Phân tích 泳ng x穎 phi tuy院n d亥m l噂p ch泳e"p<pi" FGMs trên n隠p"8 p"j欝i Winkler ch鵜u t違i tr丑ng fk"8瓜pi"8k隠u hòa, Lu壱p"x<p"vj衣e"u ." vt逢運pi"AJDM"Vr0"J欝 Chí Minh, 2011.

54. E.Sharbati, W.Szyzkowski, A new FEM approach for analysis of beams with relative movements of masses, Finite Elements in Analysis and Design 47(2011) 1047-1057.

PH LC

Ej逢挨pi"vt·pj"v pj"vqƒp"f亥m t詠c"8挨p"ej鵜u v壱t th吋 chuy吋p"8瓜pi"zfiv"8院n bi院n d衣ng n隠n và móng: VBIwDF.m

format compact

clc clear

disp('Dam tua don chiu vat the chuyen dong xet den bien dang nen va mong'); L=20;%m noe=20; loe=L/noe; non=noe+1; nonpe=2; nodofpn=2; nodofos=non*nodofpn; coord(:,2)=0; for i=0:noe coord(i+1,1)=i*loe; end E=2e11;%N/m2 I=0.048;%m4 ro=1.5e4;%kg/m kn=100*E*I/L^3; for i=1:noe elem(i,1)=i; elem(i,2)=i+1; end

%bo xu ly dieu kien bien

K=zeros(nonpe*nodofpn,nonpe*nodofpn); M=zeros(nonpe*nodofpn,nonpe*nodofpn); ix=zeros(nonpe*nodofpn,1); KOS=zeros(nodofos,nodofos); MOS=zeros(nodofos,nodofos); f=zeros(nodofos,1); for ie=1:noe endoe(1)=elem(ie,1); endoe(2)=elem(ie,2); [K,M]=smovibbeamelem2(E,loe,I,ro); ix=indexos(endoe,nonpe,nodofpn); [KOS,MOS]=smosovib(KOS,MOS,K,M,ix); end KOS;

MOS;

KOS(1,1)=KOS(1,1)+kn;

KOS(nodofos-1,nodofos-1)=KOS(nodofos-1,nodofos-1)+kn; COS=zeros(nodofos,nodofos);

%Khai bao dac trung khoi luong di chuyen

mv=0.1*ro*L;% khoi luong vehicle (kg)

kv=10;%do cung lo xo cua vehicle

cv=0;%he so can cua vehicle

v=60;%van toc chuyen dong cua vehicle

am=0;%gia toc chuyen dong cua vehicle

T=L/v;%thoi gian vat di het dam %Hang so tich phan Newmark

gama=1/2; beta=1/4;

dt=0.001;%buoc thoi gian

a0=1/(beta*dt^2); a1=gama/(beta*dt); a2=1/(beta*dt); a3=1/(2*beta)-1; a4=gama/beta-1; a5=dt/2*(gama/beta-2); a6=dt/(1-gama); a7=gama*dt;

%dieu kien ban dau

X0=zeros(nodofos+1,1); X0d=zeros(nodofos+1,1); X0dd=zeros(nodofos+1,1); X(:,1)=X0; Xd(:,1)=X0d; Xdd(:,1)=X0dd; t=0; i=1; for t=dt:dt:T i=i+1; xglobal=v*t+0.5*am^2/2; s=fix(xglobal/loe)+1; if s<=noe s=s; else s=noe; end xlocal=xglobal-(s-1)*loe;

Một phần của tài liệu Phân tích dầm tựa đơn chịu vật thể chuyển động xét đến biến dạng nền và móng (Trang 63 - 79)

Tải bản đầy đủ (PDF)

(79 trang)