6. Thời gian và địa điểm thực hiện
2.2.3 Nhận diện khuôn mặt dựa trên ngoại hình
Phương pháp dựa trên ngoại hình tiên tiến hơn phụ thuộc vào một tập hợp các hình ảnh khuôn mặt đào tạo đại biểu để tìm ra các mô hình khuôn mặt. Nó dựa vào học máy và phân tích thống kê để tìm các đặc điểm liên quan của hình ảnh khuôn mặt và trích xuất các đặc điểm từ chúng. Phương pháp này hợp nhất một số thuật toán:
Thuật toán dựa trên Eigenface thể hiện hiệu quả các khuôn mặt bằng cách sử dụng Phân tích thành phần chính (PCA). PCA được áp dụng cho một tập hợp hình ảnh để hạ thấp kích thước của tập dữ liệu, mô tả tốt nhất phương sai của dữ liệu. Trong phương pháp này, một khuôn mặt có thể được mô hình hóa như một tổ hợp tuyến tính của các eigenfaces (tập hợp các eigenvector). Nhận dạng khuôn mặt, trong trường hợp này, dựa trên việc so sánh các hệ số của biểu diễn tuyến tính.
Cácthuật toándựa trên phân phối như PCA và Fisher's Discriminant xác định không gian con đại diện cho các mẫu khuôn mặt. Chúng thường có một bộ phân loại được đào tạo để xác định các trường hợp của lớp mẫu đích từ các mẫu ảnh nền. Mô hình Markov ẩn là một phương pháp tiêu chuẩn cho các nhiệm vụ phát hiện. Trạng thái của nó sẽ là các đặc điểm trên khuôn mặt, thường được mô tả dưới dạng các dải pixel.
Mạng lưới Winnows thưa thớt xác định hai đơn vị tuyến tính hoặc các nút đích: một cho các mẫu khuôn mặt và một cho các mẫu không phải khuôn mặt.
Bộ phân loại Naive Bayes tính toán xác suất của một khuôn mặt xuất hiện trong hình ảnh dựa trên tần suất xuất hiện của một loạt mẫu trên các hình ảnh huấn luyện. Học quy nạp sử dụng các thuật toán như C4.5 của Quinlan hoặc FIND-S của Mitchell để phát hiện các khuôn mặt bắt đầu với giả thuyết cụ thể nhất và khái quát hóa.
Mạng nơ-ron, chẳng hạn như GAN, là một trong những phương pháp mới nhất và mạnh nhất đểphát hiện các vấn đề, bao gồm nhận diện khuôn mặt, phát hiện cảm xúc và nhận dạng khuôn mặt.