TÀI LIỆU THAM KHOẢ

Một phần của tài liệu Nghiên cứu và ứng dụng mạng nơron và lôgic mờ cho bài toán dự báo phụ tải điện ngắn hạn634 (Trang 123 - 131)

[1]. Trần Anh Dũng, Nguyễn Quang Thi, Nguyễn Hoàng Việt: Mạng Wavelet cho bài toỏn dự bỏo phụ tả đi iện ng n hắ ạn trong cỏc ngày đặc biệt. T ạp chớ Phỏt triển Khoa học và cụng nghệ, tập 10, số 06 - 2007.

[2]. Đồng Sĩ Thiện Chõu, Trần Hoàng Lĩnh,Trần Thị Hoàng Oanh, Nguyễn Kỳ Tài: Ứng d ng m ng n ron song tuy n trong bài toỏn d bỏo ph ụ ạ ơ ế ự ụ tải đ ệ . Tại n p chớ Phỏt tri n Khoa h c và cụng ngh tậể ọ ệ, p 10, s 04 - ố 2007, t p 10, sậ ố 11 - 2007.

[3]. Lờ Thị Thanh Hà, Trần Kỳ Phỳc, Nguyễn Tiờn Phong, Monique Polit: Mạng nơron - dự bỏo phụ tả đi iện ngắn hạn ứng d ng tụ ại Hà Nội, ảnh hưởng của cỏc thụng số thời tiết. Tạp chớ Tự động húa ngày nay, số 9-2006. [4]. Trần Đỡnh Long: Quy hoạch phỏt tri n năng lượng và đ ệể i n lực. NXB

Khoa học và kỹ thuật, 2001.

[5]. Nguyễn Lõn Trỏng: Quy hoạch phỏt triển h th ng i n. NXB Khoa ệ ố đ ệ học và kỹ thuật, 2007.

[6]. Cụng ty Đ ệi n lực 3: Dự bỏo sự phỏt triển phụ tải đ ệ , 2002. i n

[7]. Đặng Ngọc Dinh, Nguyễn Hữu Khỏi, Trần Bỏch: Hệ thống đ ện 1. Nhà i xuất bả Đại học và Trung học chuyờn nghiệp, 1981. n

[8]. EVN: Quy hoạch phỏt triển điện lực Việt Nam (Tổng sơ đồ VI) quyển 1, quyển 2, 2008.

[9]. S. Amari: Mathematical Theory of neural learning, pp. 281 - 294, New Generation Computing, 1991.

[10]. M. Cottrell, B. Girard, Y. Girard, C. Muller, P. Rousse: Daily electrical power curve, classification and forcasting using a Kohonen map, “From natural to artificial neural computation”. IWANN’95, pp. 1107 - 1113, Malaga, 1995.

[11]. I. Dobrzanska: The variation of power system load and their analysis and method for prediction. Dysertacja 266, Institute of Energy, Poland, 1962. [12]. I. Dobrzanska: Power system load analysis. PWN, Poland, 1979. [13]. D. Georgiew, B. Kostow: Method for power predicition in power

[14]. A. Germond, N. Macabrey, T. Baumann: Application of artificial neural networks to load forecasting. NATO Conference, Brussels, 1992.

[15]. S. Gora: Prognoza obciazen krajowego systemu lektroenergetycznego na matematycznej maszynie szyfrowej ZAM2. Zeszyty naukowe PG, No. 53, 1964.

[16]. M. Hagan, S. Behr: The time series approach to short term load forecasting. IEEE Trans. PWRS-2, pp. 785 - 791, 1987.

[17]. S. Haykin: Neural networks - A comprehensive foundation. Simon and Schuster, A Viacom Company, 1999.

[18]. T. Koskela, M. Lehtokangas, J. Saarinen, K. Kaski: Time series prediction with multilayer perceptron, FIR and Elman neural networks, pp. 491 - 495.

[19]. J. Malko, H. Mikolajczyk, W. Skorupski:, Artificial neural network based models for short- and long-term load forecasting in the power system. Stockhom Power Tech., pp. 595 - 600, 1992.

[20]. F. Marin, F. Sandoval: Short-term peak load forecasting, statistical methods versus artificial neural networks. IWANN’97, pp. 1334 - 1343, 1997.

[21]. H. Mori, T. Ogasawara: A recurrent neural network approach to short term load forecasting in electric power systems. IEEE ICNN, Portland, 1993. [22]. J. Nazarko, W. Zalewski: The fuzzy regression approach to peak load

estimation in power distribution systems. IEEE Trans. on Power Systems, No. 14, pp. 809 - 814, 1999.

[23]. B. Novak: Neuro-fuzzy load forecasting. NNC, p. 342 - 346, Vienna, 1998. [24]. T. Onoda: Next day peak load forecating using ANN with modified

backpropagation learning algorithm. IEEE ICNN, Orlando, 1994. [25]. S. Osowski, K. Siwek: Selforganising neural networks for short term load

forecasting in power system. EANN’98, pp. 253 - 256, Gilbraltar, 1998. [26]. S. Osowski, K. Siwek: The selforganising neural networks approach

to load forecasting in power system. IJCNN’99, vol.1, pp. 1032 - 1036, Washington, 1999.

[27]. D, Srinivasan: Evolving artificial neural networks for short term load forecasting. Neurocomputing, vol. 23, pp. 265 - 276, 1998.

[28]. Unipede Corech Working Group: Neural networks, fuzzy logic and genetic algorithms in the electricity supply industry models and applications. Draft Report, 1996.

[29]. E. Wan: Finite impulse response neural networks for autoregressive time series prediction. Proceedings of the NATO Advanced Workshop on Time Series Prediction and Analysis, Santa Fe, 1992. [30]. A. Wang, B. Ramsay: A neural network based estimator for

electricity spot-pricing with particular reference to weekend and public holiday. Neurocomputing, vol. 23, pp. 47 - 57, 1998.

[31]. G.H. Golub, CF Van Loan: Matrix computations. Third edition 1996 The Johns Hopkins University Press 2715 North Charles Street

[32]. R. Williams, D. Zipser: A learning algorithm for continually running fully recurrent neural networks. Neural Computers, vol. 1, pp. 270 - 280, 1989.

[33]. J. Zielinski, N. Hatziargyriou, J. Pecas Lopers: AI in power systems - selected applications. Colloquium in Artificial Intelligence, CAI’96, Poland, 1996.

[34]. N. Amjady: Short-Term Hourly Load Forecasting Using Time-Series Modeling with Peak Load Estimation Capability. IEEE Transactions on Power Systems, Vol. 16, No. 3, pp. 498-505, 2001.

[35]. A.G. Baklrtzis, V. Petrldis, S. J. Klartzls, M. C. Alexladls: A Neural Network Short Term Load Forecasting Model for the Greek Power System. IEEE Transactions on Power Systems, Vol. 11, No. 2, May 1996. pp. 858-863.

[36]. D. Benaouda, F. Murtagh, J.L. Starck and O. Renaud: Wavelet- Based Nonlinear Multi-Scale Decomposition Model for Electricity load Forecasting. Neurocomputing, Vol. 70, pp. 134-154, 2006. [37]. Z. Boger: Electricity Load Forecast Using Artificial Neural Networks

Clustering. Available at http://neuron.tuke.sk/competition, 2001. [38]. B.L. Bowerman, R.T. O’Connell and A.B. Koehler: Forecasting,

[39]. W. Brockmann, S. Kuthe, Different models to forecast electricity loads, in [77], pp. 41–54, 2002.

[40]. E. Castillo, B.Guijarro,andA. Alonso, Electricity load forecast using functional networks. Pp. 75–84, 2002.

[41]. W. Charytoniuk and M.S. Chen: Very Short-Term Load Forecasting Using Artificial Neural Networks. IEEE Transactions on Power Systems, Vol. 15, No. 1, pp. 263-268, 2000.

[42]. W. Charytoniuk, E.D. Box, W.J. Lee, M.S. Chen, P. Kotas and P.V. Olinda: Neural-Network-Based Demand Forecasting in a Deregulated Environment. IEEE Transactions on Industry Applications, Vol. 36, No.3, pp. 893-898, 2000.

[43]. J. Contreras, R. Espinola, F.J. Nogales and A.J. Conejo: ARIMA Models to Predict Next-Day Electricity Prices, IEEE Transactions on Power Systems, Vol. 18, No. 3, pp. 1014-1020, 2003.

[44]. C. Cortes, V. Vapnik: Support-vector network. Mach. Learn., vol. 20, pp. 273–297, 1995.

[45]. Cottrell, M., Girard, B., Rousset, P.: Forecasting of Curves Using a Kohonen Classification. Journal of Forecasting, Vol. 17, 429-439, 1998. [46]. I. Drezga, S. Rahman: Short Term Load Forecasting with Local

Hours ANN Predictors. IEEE Trans. Power Systems, vol. 14, pp. 844-850.

[47]. A.A. El-Desouky and M.M. El-Kateb: Hybrid Adaptive Techniques for Electric-Load Forecast Using ANN and ARIMA. IEE Proceedings of Generation, Transmission and Distribution, Vol. 147, No. 4, pp. 213-217, 2000.

[48]. M. El-Telbany and F. El-Karmi: Short-Term Forecasting of Jordanian Electricity Demand Using Particle Swarm Optimization. Electric Power Systems Research, 2007.

[49]. M. Gavrilas: Neural Network Based Forecasting for Electricity Markets. Technical University of Iasi, Romania.

[50]. A. Gholipour, C. Lucas, B. N. Araabi, M. Mirmomeni, M. Shafiee: Extracting the main patterns of natural time series for longterm neuro fuzzy prediction. Neural Computing and Applications, 2006.

[51]. D. Genethliou: Statistical Approaches to Electric Load Forecasting. Ph.D. Thesis, Stony Brook University, 2005.

[52]. H. S. Hippert, C. E. Pedreira, R. C. Souza: Neural networks for short- term load forecasting: A review and evaluation. IEEE Trans. Power Syst., vol. 16, pp. 44–55, 2001.

[53]. S.J. Huang, K.R. Shih:, Short-Term Load Forecasting Via ARMA Model Identification Including Non-Gaussian Process Considerations. IEEE Transactions on Power Systems, Vol. 18, No. 2, pp. 673-679, 2003.

[54]. Hyan Xu, Wei Ji Chen: Artificial Neural Network Short-term Electrical Load Forecasting Techniques. IEEE TENCON, pp.1458- 1461, 1999.

[55]. G. A. Ivakhnenko: Inductive self-organizing algorithm for maximum electrical load prediction, in [77], pp. 85–92, 2002.

[56]. K. Jabbour, J. F. V.Riveros, D. Landsbergen: W. Meyer, Alfa: Automated load forecasting assistant. IEEE Trans. Power Syst., vol.3, pp. 908–914, 1988.

[57]. Jie Bao: Short-term Load Forecasting based on Neural network and Moving Average. Artificial Intelligence lab, Iowa State University. [58]. Khan M.R.: Short term load forecasting for large distribution systems

using artificial neural networks and fuzzy logic. PhD Thesis, UVEE, FEI, VUT Brno, Czech Republic, 2001.

[59]. Khan M.R., Zak L., Ondrusek C.: Fuzzy logic based short-term electric load forecasting. 4-th International Scientific Conference "Elektro-2001", Slovak Republic, pp. 19-24, 2001.

[60]. A. Khotanzad, E. Zhou and Hassan Elragal: A Neuro-Fuzzy Approach to Short-Term Load Forecasting in a Price-Sensitive Environment. IEEE Transactions on Power Systems, Vol. 17, No. 4, pp. 1273-1282, 2002.

[61]. K.H. Kim, H.S. Youn and Y.C. Kang: Short-Term Load Forecasting for Special Days in Anomalous Load Conditions Using Neural Networks and Fuzzy Inference Method. IEEE Transactions on Power Systems, Vol. 15, No. 2, pp. 559-565, 2000.

[62]. Kinh D. Pham: Load Forecasting Using Artificial Neural Network Conference Paper, No. 95 B4, 1995.

[63]. W. Kowalczyk: Averaging and data enrichment: Two approaches to electricity load forecasting. In [77], pp. 209–218, 2002.

[64]. A. Lewandowski, F. Sandner, P. Protzel: Prediction of electricity load by modeling the temperature dependencies. In [77], pp. 107–114, 2002. [65]. Li Zhang, Peter B. Luh: Neural Network-Based Market Clearing

Price Prediction and Confidence Interval Estimation With an Improved Extended Kalman Filter Method. IEEE Transactions on Power System, Vol. 20, No. 1, FEBRUARY 2005.

[66]. S.H. Ling, F.H.F. Leung, H.K.Lam, Y.S. Lee and P.K.S. Tam: A Novel Genetic-Algorithm-Based Neural Network for Short-Term Load Forecasting. IEEE Transactions on Industrial Electronics, Vol. 50, No. 4, pp.793-799, 2003.

[67]. A.Lotfi: Application of learning fuzzy inference systems in electricity load forecast. In [77], pp. 123–130, 2002.

[68]. K. Methaprayoon: Neural Network-Based Short Term Load Forecasting for Unit Commitment Scheduling. M.S. thesis, The University of Texas at Arlington, USA, 2003.

[69]. K.-R. Mỹller, A. Smola, G. Rọtsch, B. Schửlkopf, J. Kohlmorgen, V.Vapnik: Predicting time series with support vector machines, in “Advances in Kernel Methods -Support Vector Learning”. B. Schửlkopf, C. J.C.Burges, and A.J.Smola, Eds. Cambridge, MA: MITPress, pp. 243–254,1999.

[70]. P. Murto: Neural network models for short-term load forecasting. Master’s thesis, Dept. Eng. Phys. Math., Helsinki Univ. Technology, Helsinki, Finland, 1998.

[71]. Nelles O.: Nonlinear system identification. Springer, Berlin Heidelberg New York, 2001.

[72]. F.J. Nogales, J. Contreras, A.J. Conejo and R. Espinola: Forecasting Next-Day Electricity Prices by Time Series Models. IEEE Transactions on Power Systems, Vol. 17, No. 1, pp. 342-348, 2002.

[73]. A. Oonsivilai, El-Hawary: Wavelet Neural Network Based Short Term Load Forecasting of Electric Power System Commercial Load. Proceedings of the 1999 IEEE Canadian Conference on Electrical and Computer Engineering, Alberta, Canada May 9-12 1999.

[74]. D.C. Park, M.A. El-Sharkawi, R.J. Marks, L.E. Atlas and M.J. Damborg: Electric Load Forecasting Using An Artificial Neural Network. IEEE Transactions on Power Systems, Vol. 6, No. 2, pp 442-449, 1991.

[75]. E. Pelikỏn: Middle-term electrical load forecasting by time series decomposition. In [77], 2002, pp. 167–176.

[76]. S. Rahman and O. Hazim: A generalized knowledge-based short-term load-forecasting technique. IEEE Trans. Power Syst., vol. 8, pp. 508– 514, 1993.

[77]. F. Rivieccio: SVM for an electricity load forecast problem, pp. 77– 186, 2002.

[78]. L.M. Saini and M.K. Soni: Artificial Neural Network-Based Peak Load Forecasting Using Conjugate Gradient Methods. IEEE Transactions on Power Systems, Vol. 17, No. 3, pp. 907-912, 2002. [79]. T. Senjyu, H. Takara, K. Uezato and T. Funabashi: One-Hour-Ahead

Load Forecasting Using Neural Network. IEEE Transactions on Power Systems, Vol. 17, No. 1, pp. 113-118, 2002.

[80]. A.Sfetsos, A: Comparison of Various Forecasting Techniques Applied to Mean Hourly Wind Speed Time Series. Renewable Energy, Vol. 21, pp. 23-35, 2000.

[81]. A.P.Silva, L.S.Moulin: Confidence Intervals for Neural Network Based Short-Term Load Forecasting. IEEE Transactions on Power Systems, Vol. 15, No. 4, pp. 1191-1196, 2000.

[82]. P.Sincỏk, J.Strackeljan, M.Kolcun, D.Novotný, and P.Szathmỏry: Electricity Load Forcast Using Intelligent Technologies. EUNITE: Eds., The European Network on Intelligent Technologies for Smart Adaptive Systems, 2002.

[83]. A.K.Sinha: Short Term Load Forecasting Using Artificial Neural Networks. In Proc. of IEEE Int. Conf on Industrial Technology, Goa, India, vol. 1, pp. 548-553, 2000.

[84]. N.S.Sisworahardjo, A.A.El-Keib, J.Choi, J.Valenzuela, R.Brooks, I.El-Agtal: A Stochastic Load Model for An Electricity Market. Electric Power Systems Research, Vol. 76, pp. 500-508, 2006.

[85]. E.G.Swee, Terence, S.Elangovan: Wavelets Based Analysis of Non- Uniformaly Sampled Data Power Forecasting. Department of Electrical engineering, National University of Singapore.

[86]. M.Tarafdar Haque, A.M.Kashtiban: Application of Neural Networks in Power Systems; A Review. Transaction on Engineering Computing and Technology, Vol6, June 2005.

[87]. V.Vapnik: Statistical Learning Theory. NewYork: Wiley,1998.

[88]. R.C.Weizenegger: Maximum electricity load problem. Pp. 187–208, 2002. [89]. J.N.Zagrajek and R.Weron: Modeling Electricity Loads in California: ARMA Models with Hyperbolic Noise. Signal Processing, Vol. 82, pp. 1903-1915, 2002.

[90]. T.Zheng, A.A.Girgis and E.B.Makram: A Hybrid Wavelet-Kalman Filter Method for Load Forecasting. Electric Power Systems Research, Vol. 54, pp. 11-17, 2000.

[91]. E.Zhou: Evolutionary Intelligent Systems for Pattern Classification and Price Based Electric Load Forecasting Applications. Ph.D. Thesis, School of Engineering and Applied Science, Southern Methodist University, 2007.

[92]. D.Živcỏk, Electricity load forecasting using ANN. Pp. 219–231, 2002. [93]. W Bartkiewicz: Neuro-Fuzzy Approaches to Short-Term Electrical

Load forecasting. IEEE-INNS-ENNS Inernational Join Conference on Neural Networks (IJCNN'00) , Vol 6, pp.6229, 2000.

[94]. Mohamed Tarek Khadir, Damien Fay, Ahmed Boughria: Day Type Identification for Algerian Electricity Load using Kohonen Maps. Word Academy of Science, Engineering and Technology, Vol 22, pp.129-133, 2006.

[95].Dipti Srinivasan, C.S.Chang, Swee Sien Tan: One-Day Ahead Electric Load Forecasting With Hybrid Fuzzy-Neural Networsk. Biennial Conference of the North American, pp.160-163,1996.

[96]. Dipti Srinivasan, Swee Sien Tan, C.S.Chang, Eng Kiat Chan: Paralltel neural network-fuzzy expert system strategy for short-term Load Forecasting: System Implementation And Performance Evaluation. IEEE Transactions on Power Systems, Vol 14, pp.1100-1106.

[97]. Hiroyuki Mori, Tadahiro Itagaki: A fuzzy inference neural network based method for short-term load forecasting. International Joint Conference on Neural Networks, 2004.

[98]. Zhang Xiaoxing, Sun Caixin: Dynamic intelligent cleaning model of dirty electric load data. Energy Conversion and Management, Vol 49, pp. 564-569, 2008.

[99]. AR Koushki: Load Forecasting With The Aid of Neuro-Fuzzy Modelling. International Conference on Computer Science and Information Technologies, 1999.

[100]. Xiaoxing Zhang, Haijun Ren, Yuming Liu, Qiyun Cheng, Caixin Sun: The Dynamic Character Curve Adjusting Model of Electric Load Based on Data Mining Theory. Advangced Data Mining and Applications, Vol 3584, pp. 626-633, 2005.

[101]. Dejan J.Sobajic: Neural network computing for the electric power industry. Proceedings of the 1992 INNS summer workshop.

[102]. Gianfranco Chicco, Roberto Napoli, Federico Piglione: Load pattern clustering for short-term load forecasting of anomalous days. Proc. IEEE Porto Power Tech 2001 (Porto, Portugal), Vol 2, p.6, 2001.

[103]. Trần Thị Thu Trà: Ứng d ng thu t toỏn di truyền và phương phỏp ụ ậ nơron trong qui hoạch phỏt triển nguồn đ ệ . Đi n HBK Hà N i, 2005. ộ

Một phần của tài liệu Nghiên cứu và ứng dụng mạng nơron và lôgic mờ cho bài toán dự báo phụ tải điện ngắn hạn634 (Trang 123 - 131)

Tải bản đầy đủ (PDF)

(131 trang)