[1]. Trần Anh Dũng, Nguyễn Quang Thi, Nguyễn Hoàng Việt: Mạng Wavelet cho bài toỏn dự bỏo phụ tả đi iện ng n hắ ạn trong cỏc ngày đặc biệt. T ạp chớ Phỏt triển Khoa học và cụng nghệ, tập 10, số 06 - 2007.
[2]. Đồng Sĩ Thiện Chõu, Trần Hoàng Lĩnh,Trần Thị Hoàng Oanh, Nguyễn Kỳ Tài: Ứng d ng m ng n ron song tuy n trong bài toỏn d bỏo ph ụ ạ ơ ế ự ụ tải đ ệ . Tại n p chớ Phỏt tri n Khoa h c và cụng ngh tậể ọ ệ, p 10, s 04 - ố 2007, t p 10, sậ ố 11 - 2007.
[3]. Lờ Thị Thanh Hà, Trần Kỳ Phỳc, Nguyễn Tiờn Phong, Monique Polit: Mạng nơron - dự bỏo phụ tả đi iện ngắn hạn ứng d ng tụ ại Hà Nội, ảnh hưởng của cỏc thụng số thời tiết. Tạp chớ Tự động húa ngày nay, số 9-2006. [4]. Trần Đỡnh Long: Quy hoạch phỏt tri n năng lượng và đ ệể i n lực. NXB
Khoa học và kỹ thuật, 2001.
[5]. Nguyễn Lõn Trỏng: Quy hoạch phỏt triển h th ng i n. NXB Khoa ệ ố đ ệ học và kỹ thuật, 2007.
[6]. Cụng ty Đ ệi n lực 3: Dự bỏo sự phỏt triển phụ tải đ ệ , 2002. i n
[7]. Đặng Ngọc Dinh, Nguyễn Hữu Khỏi, Trần Bỏch: Hệ thống đ ện 1. Nhà i xuất bả Đại học và Trung học chuyờn nghiệp, 1981. n
[8]. EVN: Quy hoạch phỏt triển điện lực Việt Nam (Tổng sơ đồ VI) quyển 1, quyển 2, 2008.
[9]. S. Amari: Mathematical Theory of neural learning, pp. 281 - 294, New Generation Computing, 1991.
[10]. M. Cottrell, B. Girard, Y. Girard, C. Muller, P. Rousse: Daily electrical power curve, classification and forcasting using a Kohonen map, “From natural to artificial neural computation”. IWANN’95, pp. 1107 - 1113, Malaga, 1995.
[11]. I. Dobrzanska: The variation of power system load and their analysis and method for prediction. Dysertacja 266, Institute of Energy, Poland, 1962. [12]. I. Dobrzanska: Power system load analysis. PWN, Poland, 1979. [13]. D. Georgiew, B. Kostow: Method for power predicition in power
[14]. A. Germond, N. Macabrey, T. Baumann: Application of artificial neural networks to load forecasting. NATO Conference, Brussels, 1992.
[15]. S. Gora: Prognoza obciazen krajowego systemu lektroenergetycznego na matematycznej maszynie szyfrowej ZAM2. Zeszyty naukowe PG, No. 53, 1964.
[16]. M. Hagan, S. Behr: The time series approach to short term load forecasting. IEEE Trans. PWRS-2, pp. 785 - 791, 1987.
[17]. S. Haykin: Neural networks - A comprehensive foundation. Simon and Schuster, A Viacom Company, 1999.
[18]. T. Koskela, M. Lehtokangas, J. Saarinen, K. Kaski: Time series prediction with multilayer perceptron, FIR and Elman neural networks, pp. 491 - 495.
[19]. J. Malko, H. Mikolajczyk, W. Skorupski:, Artificial neural network based models for short- and long-term load forecasting in the power system. Stockhom Power Tech., pp. 595 - 600, 1992.
[20]. F. Marin, F. Sandoval: Short-term peak load forecasting, statistical methods versus artificial neural networks. IWANN’97, pp. 1334 - 1343, 1997.
[21]. H. Mori, T. Ogasawara: A recurrent neural network approach to short term load forecasting in electric power systems. IEEE ICNN, Portland, 1993. [22]. J. Nazarko, W. Zalewski: The fuzzy regression approach to peak load
estimation in power distribution systems. IEEE Trans. on Power Systems, No. 14, pp. 809 - 814, 1999.
[23]. B. Novak: Neuro-fuzzy load forecasting. NNC, p. 342 - 346, Vienna, 1998. [24]. T. Onoda: Next day peak load forecating using ANN with modified
backpropagation learning algorithm. IEEE ICNN, Orlando, 1994. [25]. S. Osowski, K. Siwek: Selforganising neural networks for short term load
forecasting in power system. EANN’98, pp. 253 - 256, Gilbraltar, 1998. [26]. S. Osowski, K. Siwek: The selforganising neural networks approach
to load forecasting in power system. IJCNN’99, vol.1, pp. 1032 - 1036, Washington, 1999.
[27]. D, Srinivasan: Evolving artificial neural networks for short term load forecasting. Neurocomputing, vol. 23, pp. 265 - 276, 1998.
[28]. Unipede Corech Working Group: Neural networks, fuzzy logic and genetic algorithms in the electricity supply industry models and applications. Draft Report, 1996.
[29]. E. Wan: Finite impulse response neural networks for autoregressive time series prediction. Proceedings of the NATO Advanced Workshop on Time Series Prediction and Analysis, Santa Fe, 1992. [30]. A. Wang, B. Ramsay: A neural network based estimator for
electricity spot-pricing with particular reference to weekend and public holiday. Neurocomputing, vol. 23, pp. 47 - 57, 1998.
[31]. G.H. Golub, CF Van Loan: Matrix computations. Third edition 1996 The Johns Hopkins University Press 2715 North Charles Street
[32]. R. Williams, D. Zipser: A learning algorithm for continually running fully recurrent neural networks. Neural Computers, vol. 1, pp. 270 - 280, 1989.
[33]. J. Zielinski, N. Hatziargyriou, J. Pecas Lopers: AI in power systems - selected applications. Colloquium in Artificial Intelligence, CAI’96, Poland, 1996.
[34]. N. Amjady: Short-Term Hourly Load Forecasting Using Time-Series Modeling with Peak Load Estimation Capability. IEEE Transactions on Power Systems, Vol. 16, No. 3, pp. 498-505, 2001.
[35]. A.G. Baklrtzis, V. Petrldis, S. J. Klartzls, M. C. Alexladls: A Neural Network Short Term Load Forecasting Model for the Greek Power System. IEEE Transactions on Power Systems, Vol. 11, No. 2, May 1996. pp. 858-863.
[36]. D. Benaouda, F. Murtagh, J.L. Starck and O. Renaud: Wavelet- Based Nonlinear Multi-Scale Decomposition Model for Electricity load Forecasting. Neurocomputing, Vol. 70, pp. 134-154, 2006. [37]. Z. Boger: Electricity Load Forecast Using Artificial Neural Networks
Clustering. Available at http://neuron.tuke.sk/competition, 2001. [38]. B.L. Bowerman, R.T. O’Connell and A.B. Koehler: Forecasting,
[39]. W. Brockmann, S. Kuthe, Different models to forecast electricity loads, in [77], pp. 41–54, 2002.
[40]. E. Castillo, B.Guijarro,andA. Alonso, Electricity load forecast using functional networks. Pp. 75–84, 2002.
[41]. W. Charytoniuk and M.S. Chen: Very Short-Term Load Forecasting Using Artificial Neural Networks. IEEE Transactions on Power Systems, Vol. 15, No. 1, pp. 263-268, 2000.
[42]. W. Charytoniuk, E.D. Box, W.J. Lee, M.S. Chen, P. Kotas and P.V. Olinda: Neural-Network-Based Demand Forecasting in a Deregulated Environment. IEEE Transactions on Industry Applications, Vol. 36, No.3, pp. 893-898, 2000.
[43]. J. Contreras, R. Espinola, F.J. Nogales and A.J. Conejo: ARIMA Models to Predict Next-Day Electricity Prices, IEEE Transactions on Power Systems, Vol. 18, No. 3, pp. 1014-1020, 2003.
[44]. C. Cortes, V. Vapnik: Support-vector network. Mach. Learn., vol. 20, pp. 273–297, 1995.
[45]. Cottrell, M., Girard, B., Rousset, P.: Forecasting of Curves Using a Kohonen Classification. Journal of Forecasting, Vol. 17, 429-439, 1998. [46]. I. Drezga, S. Rahman: Short Term Load Forecasting with Local
Hours ANN Predictors. IEEE Trans. Power Systems, vol. 14, pp. 844-850.
[47]. A.A. El-Desouky and M.M. El-Kateb: Hybrid Adaptive Techniques for Electric-Load Forecast Using ANN and ARIMA. IEE Proceedings of Generation, Transmission and Distribution, Vol. 147, No. 4, pp. 213-217, 2000.
[48]. M. El-Telbany and F. El-Karmi: Short-Term Forecasting of Jordanian Electricity Demand Using Particle Swarm Optimization. Electric Power Systems Research, 2007.
[49]. M. Gavrilas: Neural Network Based Forecasting for Electricity Markets. Technical University of Iasi, Romania.
[50]. A. Gholipour, C. Lucas, B. N. Araabi, M. Mirmomeni, M. Shafiee: Extracting the main patterns of natural time series for longterm neuro fuzzy prediction. Neural Computing and Applications, 2006.
[51]. D. Genethliou: Statistical Approaches to Electric Load Forecasting. Ph.D. Thesis, Stony Brook University, 2005.
[52]. H. S. Hippert, C. E. Pedreira, R. C. Souza: Neural networks for short- term load forecasting: A review and evaluation. IEEE Trans. Power Syst., vol. 16, pp. 44–55, 2001.
[53]. S.J. Huang, K.R. Shih:, Short-Term Load Forecasting Via ARMA Model Identification Including Non-Gaussian Process Considerations. IEEE Transactions on Power Systems, Vol. 18, No. 2, pp. 673-679, 2003.
[54]. Hyan Xu, Wei Ji Chen: Artificial Neural Network Short-term Electrical Load Forecasting Techniques. IEEE TENCON, pp.1458- 1461, 1999.
[55]. G. A. Ivakhnenko: Inductive self-organizing algorithm for maximum electrical load prediction, in [77], pp. 85–92, 2002.
[56]. K. Jabbour, J. F. V.Riveros, D. Landsbergen: W. Meyer, Alfa: Automated load forecasting assistant. IEEE Trans. Power Syst., vol.3, pp. 908–914, 1988.
[57]. Jie Bao: Short-term Load Forecasting based on Neural network and Moving Average. Artificial Intelligence lab, Iowa State University. [58]. Khan M.R.: Short term load forecasting for large distribution systems
using artificial neural networks and fuzzy logic. PhD Thesis, UVEE, FEI, VUT Brno, Czech Republic, 2001.
[59]. Khan M.R., Zak L., Ondrusek C.: Fuzzy logic based short-term electric load forecasting. 4-th International Scientific Conference "Elektro-2001", Slovak Republic, pp. 19-24, 2001.
[60]. A. Khotanzad, E. Zhou and Hassan Elragal: A Neuro-Fuzzy Approach to Short-Term Load Forecasting in a Price-Sensitive Environment. IEEE Transactions on Power Systems, Vol. 17, No. 4, pp. 1273-1282, 2002.
[61]. K.H. Kim, H.S. Youn and Y.C. Kang: Short-Term Load Forecasting for Special Days in Anomalous Load Conditions Using Neural Networks and Fuzzy Inference Method. IEEE Transactions on Power Systems, Vol. 15, No. 2, pp. 559-565, 2000.
[62]. Kinh D. Pham: Load Forecasting Using Artificial Neural Network Conference Paper, No. 95 B4, 1995.
[63]. W. Kowalczyk: Averaging and data enrichment: Two approaches to electricity load forecasting. In [77], pp. 209–218, 2002.
[64]. A. Lewandowski, F. Sandner, P. Protzel: Prediction of electricity load by modeling the temperature dependencies. In [77], pp. 107–114, 2002. [65]. Li Zhang, Peter B. Luh: Neural Network-Based Market Clearing
Price Prediction and Confidence Interval Estimation With an Improved Extended Kalman Filter Method. IEEE Transactions on Power System, Vol. 20, No. 1, FEBRUARY 2005.
[66]. S.H. Ling, F.H.F. Leung, H.K.Lam, Y.S. Lee and P.K.S. Tam: A Novel Genetic-Algorithm-Based Neural Network for Short-Term Load Forecasting. IEEE Transactions on Industrial Electronics, Vol. 50, No. 4, pp.793-799, 2003.
[67]. A.Lotfi: Application of learning fuzzy inference systems in electricity load forecast. In [77], pp. 123–130, 2002.
[68]. K. Methaprayoon: Neural Network-Based Short Term Load Forecasting for Unit Commitment Scheduling. M.S. thesis, The University of Texas at Arlington, USA, 2003.
[69]. K.-R. Mỹller, A. Smola, G. Rọtsch, B. Schửlkopf, J. Kohlmorgen, V.Vapnik: Predicting time series with support vector machines, in “Advances in Kernel Methods -Support Vector Learning”. B. Schửlkopf, C. J.C.Burges, and A.J.Smola, Eds. Cambridge, MA: MITPress, pp. 243–254,1999.
[70]. P. Murto: Neural network models for short-term load forecasting. Master’s thesis, Dept. Eng. Phys. Math., Helsinki Univ. Technology, Helsinki, Finland, 1998.
[71]. Nelles O.: Nonlinear system identification. Springer, Berlin Heidelberg New York, 2001.
[72]. F.J. Nogales, J. Contreras, A.J. Conejo and R. Espinola: Forecasting Next-Day Electricity Prices by Time Series Models. IEEE Transactions on Power Systems, Vol. 17, No. 1, pp. 342-348, 2002.
[73]. A. Oonsivilai, El-Hawary: Wavelet Neural Network Based Short Term Load Forecasting of Electric Power System Commercial Load. Proceedings of the 1999 IEEE Canadian Conference on Electrical and Computer Engineering, Alberta, Canada May 9-12 1999.
[74]. D.C. Park, M.A. El-Sharkawi, R.J. Marks, L.E. Atlas and M.J. Damborg: Electric Load Forecasting Using An Artificial Neural Network. IEEE Transactions on Power Systems, Vol. 6, No. 2, pp 442-449, 1991.
[75]. E. Pelikỏn: Middle-term electrical load forecasting by time series decomposition. In [77], 2002, pp. 167–176.
[76]. S. Rahman and O. Hazim: A generalized knowledge-based short-term load-forecasting technique. IEEE Trans. Power Syst., vol. 8, pp. 508– 514, 1993.
[77]. F. Rivieccio: SVM for an electricity load forecast problem, pp. 77– 186, 2002.
[78]. L.M. Saini and M.K. Soni: Artificial Neural Network-Based Peak Load Forecasting Using Conjugate Gradient Methods. IEEE Transactions on Power Systems, Vol. 17, No. 3, pp. 907-912, 2002. [79]. T. Senjyu, H. Takara, K. Uezato and T. Funabashi: One-Hour-Ahead
Load Forecasting Using Neural Network. IEEE Transactions on Power Systems, Vol. 17, No. 1, pp. 113-118, 2002.
[80]. A.Sfetsos, A: Comparison of Various Forecasting Techniques Applied to Mean Hourly Wind Speed Time Series. Renewable Energy, Vol. 21, pp. 23-35, 2000.
[81]. A.P.Silva, L.S.Moulin: Confidence Intervals for Neural Network Based Short-Term Load Forecasting. IEEE Transactions on Power Systems, Vol. 15, No. 4, pp. 1191-1196, 2000.
[82]. P.Sincỏk, J.Strackeljan, M.Kolcun, D.Novotný, and P.Szathmỏry: Electricity Load Forcast Using Intelligent Technologies. EUNITE: Eds., The European Network on Intelligent Technologies for Smart Adaptive Systems, 2002.
[83]. A.K.Sinha: Short Term Load Forecasting Using Artificial Neural Networks. In Proc. of IEEE Int. Conf on Industrial Technology, Goa, India, vol. 1, pp. 548-553, 2000.
[84]. N.S.Sisworahardjo, A.A.El-Keib, J.Choi, J.Valenzuela, R.Brooks, I.El-Agtal: A Stochastic Load Model for An Electricity Market. Electric Power Systems Research, Vol. 76, pp. 500-508, 2006.
[85]. E.G.Swee, Terence, S.Elangovan: Wavelets Based Analysis of Non- Uniformaly Sampled Data Power Forecasting. Department of Electrical engineering, National University of Singapore.
[86]. M.Tarafdar Haque, A.M.Kashtiban: Application of Neural Networks in Power Systems; A Review. Transaction on Engineering Computing and Technology, Vol6, June 2005.
[87]. V.Vapnik: Statistical Learning Theory. NewYork: Wiley,1998.
[88]. R.C.Weizenegger: Maximum electricity load problem. Pp. 187–208, 2002. [89]. J.N.Zagrajek and R.Weron: Modeling Electricity Loads in California: ARMA Models with Hyperbolic Noise. Signal Processing, Vol. 82, pp. 1903-1915, 2002.
[90]. T.Zheng, A.A.Girgis and E.B.Makram: A Hybrid Wavelet-Kalman Filter Method for Load Forecasting. Electric Power Systems Research, Vol. 54, pp. 11-17, 2000.
[91]. E.Zhou: Evolutionary Intelligent Systems for Pattern Classification and Price Based Electric Load Forecasting Applications. Ph.D. Thesis, School of Engineering and Applied Science, Southern Methodist University, 2007.
[92]. D.Živcỏk, Electricity load forecasting using ANN. Pp. 219–231, 2002. [93]. W Bartkiewicz: Neuro-Fuzzy Approaches to Short-Term Electrical
Load forecasting. IEEE-INNS-ENNS Inernational Join Conference on Neural Networks (IJCNN'00) , Vol 6, pp.6229, 2000.
[94]. Mohamed Tarek Khadir, Damien Fay, Ahmed Boughria: Day Type Identification for Algerian Electricity Load using Kohonen Maps. Word Academy of Science, Engineering and Technology, Vol 22, pp.129-133, 2006.
[95].Dipti Srinivasan, C.S.Chang, Swee Sien Tan: One-Day Ahead Electric Load Forecasting With Hybrid Fuzzy-Neural Networsk. Biennial Conference of the North American, pp.160-163,1996.
[96]. Dipti Srinivasan, Swee Sien Tan, C.S.Chang, Eng Kiat Chan: Paralltel neural network-fuzzy expert system strategy for short-term Load Forecasting: System Implementation And Performance Evaluation. IEEE Transactions on Power Systems, Vol 14, pp.1100-1106.
[97]. Hiroyuki Mori, Tadahiro Itagaki: A fuzzy inference neural network based method for short-term load forecasting. International Joint Conference on Neural Networks, 2004.
[98]. Zhang Xiaoxing, Sun Caixin: Dynamic intelligent cleaning model of dirty electric load data. Energy Conversion and Management, Vol 49, pp. 564-569, 2008.
[99]. AR Koushki: Load Forecasting With The Aid of Neuro-Fuzzy Modelling. International Conference on Computer Science and Information Technologies, 1999.
[100]. Xiaoxing Zhang, Haijun Ren, Yuming Liu, Qiyun Cheng, Caixin Sun: The Dynamic Character Curve Adjusting Model of Electric Load Based on Data Mining Theory. Advangced Data Mining and Applications, Vol 3584, pp. 626-633, 2005.
[101]. Dejan J.Sobajic: Neural network computing for the electric power industry. Proceedings of the 1992 INNS summer workshop.
[102]. Gianfranco Chicco, Roberto Napoli, Federico Piglione: Load pattern clustering for short-term load forecasting of anomalous days. Proc. IEEE Porto Power Tech 2001 (Porto, Portugal), Vol 2, p.6, 2001.
[103]. Trần Thị Thu Trà: Ứng d ng thu t toỏn di truyền và phương phỏp ụ ậ nơron trong qui hoạch phỏt triển nguồn đ ệ . Đi n HBK Hà N i, 2005. ộ