Ng 3.9: Các thông sc a mu sau th ngh im

Một phần của tài liệu Nghiên cứu chế tạo màng polyme tự phân hủy trên cơ sở blend của tinh bột và nhựa polyester954 (Trang 107 - 114)

Hàm lượng ph n khô ầ Hàm lượng ch t rấ ắn bay hơi pH

96

trục vít v i t l PBS/TPS = 60/40 PKL có ch s ch y b ng 5,4 g/10 phút. Blend ớ ỷ ệ ỉ ố ả ằ chế ạo đượ t c có kh ả năng sử ụng để ổ d th i các lo i màng m ng vạ ỏ ới độ ổn định cao. Màng thổi được có độ dày 30 - 45µm, độ ền kéo 25,1 MPa, độ b dãn dài 261%. 3. Biến tính tinh b t b ng axit tartaric cho hi u qu ộ ằ ệ ả tương hợp cao v i nh a PBS ớ ự ở

hàm lượng tối ưu bằng 2,4% so v i t ng khớ ổ ối lượng blend, th hi n c u trúc pha ể ệ ở ấ của blend quan sát được trên ảnh SEM đồng nh t, gấ ần như khó phân biệt được hai pha do bám dính giữa hai đã được cải thi n rõ r ệ ệt.

4. Xúc tác thi c (0,15% so v i t ng khế ớ ổ ối lượng blend) đãchứng t kh ỏ ả năng xúc tác tốt đối v i ph n ng este hóa gi a nhóm OH ớ ả ứ ữ ở cuối m ch PBS và nhóm COOH ạ trong tinh b t biộ ến tính t o ra polyme ghép PBS-g- MTPS. ạ

5. Màng blend trên cơ sở blend PBS/MTP có kh ả năng phân hủy hoàn toàn thành CO2, H2O và mùn hữu cơ theo tiêu chuẩn EN 13432. Trong điều ki n t o compost ệ ạ

hi u khí có ki m soát nhiế ể ệt độ quy mô phòng thí nghi m mệ ức độ phân rã đạt 98,4% sau 30 ngày, mức độ phân h y thành COủ 2 đạt 97,70 % sau 52 ngày. Các s n ả ph m phân h y không b t k ẩ ủ ấ ỳ ảnh hưởng b t l i nào t i ấ ợ ớ môi trường t nhiên, cây ự đậu đen trong môi trường đất có ch a compost c a blend PBS/MTPS n y m m và ứ ủ ả ầ sinh trưởng bình thường. Trong điều ki n compost t nhiên, màng blend có kh ệ ủ ự ả năng phân hủy 95,8 % sau 141 ngày.

97

TÀI LI U THAM KH O

[1]Müller, R. J (2005), Biodegradability of Polymers: Regulations and Methods for Testing”, In Biopolymers Online, DOI: 10.1002/3527600035, pp. 365-388.

[2] Panchal Shivam (2016), “Recent developments on biodegradable polymers and their future trends”, Int. Res. J. of Science & Engineering, Vol. 4 (1): 17-26.

[3] Maja Rujnić Sokele, Ana Pilipović (2017), “Challenges and opportunities of -

biodegradable plastics: A mini review , Waste Management & Research, Vol. 35(2), pp 132-140.

[4] Lê Văn Hoàng (2008), Bài gi ng tinh b t và th c ph m, Đạ ọc Đà Nẵi h ng. [5]Ali Abas Wani, Preeti Singh, Manzoor Ahmad Shah, Ute Schweiggert-Weisz,

Khalid Gul, Idrees Ahmed Wani (2012), “Rice Starch Diversity: Effects on Structural, Morphological, Thermal, and Physicochemical Properties - A Review”, Comprehensive Reviews in Food Science and Food Safety, 11(5), pp. 417-436

[6]. Chin-An Lin, Chi-Che Tung (2009), “The Preparation of Glycerol Pseudo- Thermoplastic Starch (GTPS) via Gelatinization and Plasticization”, Polymer- Plastics Technology and Engineering, vol.48, p.510 517. –

[7]. R.F.T. Stepto (1999), “Thermoplastic Starch and Drug Delivery Capsules”, Polymer International, vol.43 (2), pp.155-158.

[8]. Olivier Vilpoux, Luc Averous (2004), “Technology, use and potentialities of latin American starchy tuber Chapter 18: Starch-base plastics , Collection Latin American Starchy Tubers, NGO Raies and Cargill Foudation. Sao Paolo Brazill, – Book No.3, pp 521-533.

[9] Yachuan Zhang, Curtis Rempel and Derek McLaren (2014), “Chapter 16: Thermoplastic Starch Innovations in Food Packaging (Second Edition) , , Academic Press, London, pp 391-412.

[10] Zullo, R., Iannace, S. (2009), “The effects of different starch sources and

98

[13] Galdeano M.C., Mali S., Grossmann M.V., Yamashita F., Garcia M.A. (2009), “Effects of plasticizers on the properties of oat starch films”, Mater. Sci. Eng. C. 29, pp 532-538.

[14] Koch, K., Gillgren, T., Stading, M., Andersson, R., (2010), “Mechanical and structural properties of solution-cast high amylose maize”, Int. J. Biol. Macromol., 46, pp13- . 19

[15] El-Dash, A.A. (1982), “Chapter 10: Aplication and control of thermoplastic extrusion of cereals for food and industrial uses real a Renewable Resource: Theory and Practice (Y. Pomeranz, ed.), Am. Assoc., Cereal Chem. St. Paul, Minnesota, pp 165 – 216.

[16] Maria Teresa Pedrosa Silva Clerici (2012), “Chapter 3: Physical and/or Chemical Modifications of Starch by Thermoplastic Extrusion , Thermoplastic Elastomers, (Adel El-Sonbati, Ed.), InTech, pp 39 56. –

[17] Moscicke, L., Mitrus, M., Wojtowicz, A., Oniszczuk, T., Rejak, A., Janssen, L.

(2012), “Application of extrusion-cooking for processing of thermoplastic starch (TPS)”,Food Res. Int., 47, pp. 291-299.

[18]. Mohamad Kahar Abdul Wahab et al. (2012), “Compatibilization Effects of PE-g- MA on mechanical, thermal and swelling properties of high density Polyethylene/Natural Rubber/Thermoplastic Tapioca Starch Blends”, Polymer- Plastics Technology and Engineering, vol.51, pp.298-303.

99

[19]. Zuraida A., Nur Humairah A. R., Nur Izwah A. W., Siti Naqiah Z (2012), “The Study of Glycerol Plasticized Thermoplastic Sago Starch”, Advanced Materials Research, vol 576, pp 289 - 292

[20]. M. Ghafoori et al. (2012), “The role of joint viscoelastic function in the adhesion of low-density polyethylene to thermoplastic starch”, Journal of Adhesion Science and Technology, vol.21 (11), pp 1059-1069.

[21]. Panuwat Suppakul et al., (2006), Plasticizer and Relative Humidity Effects on

Mechanical Properties of Cassava Flour Films, Conference: The 15th IAPRI World Conference on Packaging 2006 at Tokyo, Japan.

[22] Flávia Debiagi, Léa Rita P.F. Mello and Suzana Mali (2017), “Chapter 6 - Thermoplastic Starch-Based Blends: Processing, Structural, and Final Properties , Starch-Based Materials in Food Packaging, Elsevier Inc, pp. 153-186.

[23] Eirini Adamopoulou (2012), Poly(butylene succinate): A Promising Biopolymer, MS. Thesis , School of Chemical Engineering, The Uiniversityof Athens.

4]. №va Institute Brochure (2016), [2 Succinity - Biobased your success. Biobased Polybutylene Succinate (PBS) An attractive polymer for biopolymer compounds. [25]. Ahn B.D., Kim S. H., KimY. H., Yang J. S. (2001), “Synthesis and

Characterization of the Biodegradable Copolymers from Succinic Acid and Adipic Acid with 1,4 Butanediol”, Journal of Applied Polymer Science, Vol.82, pp 2808– 2826.

[26] Yasushi Ichikawa Tatsuya , Mizukoshi (2011), “Bionolle Polybutylenesuccinate Synthetic biodegradable polymer, Spinger Publisher, pp 285-313.

[27]. SK Chemicals, https://www.skchemicals.com/page/business/bs_skygreen.do [28]. Mitsubishi Chemicals, http://www.pttmcc.com/new/faq.php

100 Degrad. Stab, 59 (1-3), pp 209-214.

[33]. Tserki V., Matzinos P., Pavlidou E., Panayiotou C., (2006), “Biodegradable

aliphatic polyesters. Part II. Synthesis and characterization of chain extended poly(butylene succinate co butylene adipate)”, Polymer Degradation and Stability, pp 377 384.

[34] Jun Xu, Bao-Hua Guo (2010), “Review: Poly(butylene succinate) and its copolymers: Research, development and industrialization”, Biotechnol. J., 5, pp1149 1163. –

Preparation and characterization of [35] Wang, N., Yu, J., & Ma, X. (2007), “

thermoplastic starch/PLA blends by one-step reactive extrusion”, Polymer International, 56, pp 1440 1447. –

[36] Moad, G. (2011), “Chemical modification of starch by reactive extrusion”, Progress in Polymer Science, 36(2), pp 218 237. –

[37] Raquez, J. M., Nabar, Y., Srinivasan, M., Shin, B. Y., Narayan, R., & Dubois, P. (2008a Maleated thermoplastic starch by reactive extrusion”, Carbohydrate Polymer, 74(2), pp 159 169. –

[38] Xie, F., Yu, L., Liu, H., & Chen, L. (2006), “Starch modification using reactive extrusion”, Starch/Stärke, 58(3-4), pp 131 139. –

101

[39] R. Shi, Z. Zhang, Q. Liu, Y. Han, L. Zhang, D. Chen, W. Tian (2007), “Characterization of citric acid/glycerol co-plasticized thermoplastic starch prepared by melt blending”, Carbohydr. Polym. 69, pp 748 755. –

[40] N. Wang, X. Zhang, N. Han, F. Jianming (2010), “Effects ofwater on the properties of thermoplastic starch poly(lactic acid) blend containing citric acid”, J. Thermoplast. Compos. Mater., 23, pp 19 34. –

[41] T. Divers, I. Pillin, J.F. Feller, G. Levesque, Y. Grohens (2004), Starch “ modification, destructuration and hydrolysis during O formylation”,- Starch (Stärke), 56, pp 389 398. –

[42] A.J.F. Carvalho, M.D. Zambon, A.A.S. Curvelo, A. Gandini (2005), “Thermoplastic starch modification during melt processing: hydrolysis catalyzed by carboxylic acids”, Carbohydr. Polym., pp 387–390.

[43] Zhang J.F, Sun X (2004), “Mechanical properties of poly(lactic acid)/starch composites compatibilized by maleic anhydride”. Biomacromolecules, 5 (4), pp 1446-1451.

[44] Hongkai Nia, Biao Yangb, Hui Sunc and Guozhi Xu (2012), “Wet Blending of Pregelatinized Starch and Poly (butylene succinate)”, Advanced Materials Research Vol. 557-559, pp 1121-1126.

[45] Supakij Suttiruengwong, Kanchana Sotho1 and Manus Seadan (2014), “Effect of Glycerol and Reactive Compatibilizers on Poly(butylene succinate)/Starch Blends”,

J. Renew. Mater., Vol. 2, №. 1, pp 85-92.

[46] Andres M. Tuates Jr., Ofero A. Caparino (2016), “Development of Biodegradable Plastic as Mango Fruit Bag”, International Journal on Advanced Science Engineering Information Technology, Vol.6 (5), pp 799 - 803.

[47] Bruna Klein, Nathan Levien Vanier, Khalid Moomand, Vânia Zanella Pinto, Rosana Colussi, Elessandra da Rosa Zavareze, Alvaro Renato Guerra Dias (2014),

102

Structure and properties”, Carbohydrate Polymers, 102, pp 576 583. –

[50] Supakij Suttiruengwong, Kanchana Sotho, Manus Seadan (2014), “Effect of Glycerol and Reactive Compatibilizers on Poly(butylene succinate)/Starch Blends”, J. Renew. Mater., Vol. 2 (1), pp. 85-92.

Một phần của tài liệu Nghiên cứu chế tạo màng polyme tự phân hủy trên cơ sở blend của tinh bột và nhựa polyester954 (Trang 107 - 114)