Cấu trúc của mạng nơron Kohonen

Một phần của tài liệu Tìm hiểu mạng kohonen và cài đặt ứng dụng (Trang 25 - 27)

Mạng nơron Kohonen chỉ bao gồm một lớp dữ liệu đầu vào và một lớp dữ liệu đầu ra của các nơron và nó không chứa lớp ẩn.

Lớp dữ liệu đầu vào đối với mạng nơron Kohonen là các nơron đầu vàọ Các nơron đầu vào này tạo thành mẫu dữ liệu đầu vào của mạng. Đối với mạng nơron Kohonen, ta nên chọn dữ liệu đầu vào chuẩn hóa trong khoảng giữa -1 và 1. Khi thực thi mẫu dữ liệu đầu vào, mạng sẽ tạo ra các nơron đầu rạ

Lớp đầu ra của mạng nơron Kohonen rất khác với lớp đầu ra của mạng nơron truyền thẳng. Đối với mạng truyền thẳng, nếu chúng ta có một mạng nơron với 5 nơron đầu ra, chúng sẽ có thể cho kết quả bao gồm 5 giá trị. Còn trong mạng nơron Kohonen chỉ có một nơron đầu ra cho ra một giá trị. Giá trị duy nhất này có thể là đúng hoặc saị Dữ liệu đầu ra từ mạng nơron Kohonen thường là các chỉ số của nơron (Ví dụ nơron số 5,…). Cấu trúc đặc trưng của mạng nơron Kohonen được chỉ ra trong hình 2.1.

Hình 2.1: Một dạng mạng nơron Kohonen

Bây giờ, chúng ta xem xét mạng nơron Kohonen xử lý thông tin như thế nàọ Để kiểm tra quá trình này, chúng ta xem xét một ví dụ sau:

Ví dụ

Chúng ta sẽ xém xét một mạng nơron Kohonen đơn giản. Mạng này sẽ chỉ có 2 nơron đầu vào, và 2 nơron đầu rạ Dữ liệu đầu vào được cho là 2 nơron được chỉ ra trong bảng 2.1 và các trọng số kết nối giữa các nơron trong bảng 2.2.

Bảng 2.1 Bảng 2.2

3. Chuẩn hóa dữ liệu đầu vào

Mạng nơron Kohonen đòi hỏi dữ liệu đầu vào phải được chuẩn hóạ Yêu cầu của mạng nơron Kohonen là dữ liệu đầu vào của nó phải được phân hoạch trên miền xác định giữa -1 và 1. Mỗi dữ liệu đầu vào nên sử dụng hoàn toàn miền xác định, vì nếu các nơron đầu vào chỉ sử dụng các số giữa 0 và 1, thì thành quả của mạng nơron sẽ không cao (bị tổn thất).

Để chuẩn hóa dữ liệu đầu vào, chúng ta sẽ tính toán độ dài vector (vector length) của các dữ liệu đầu vào, hoặc vector đầu vàọ Trong trường hợp này độ dài vector sẽ là: (0.5 * 0.5) + (0.75 * 0.75) = 0.8125.

Vậy trường hợp trên sẽ có độ dài vector là 0.8125. Sử dụng độ dài này, chúng ta có thể xác định được hệ số chuẩn hóạ Hệ số chuẩn hóa là số nghịch đảo của căn bậc hai độ dài vector đầu vàọ Trong trường hợp trên thì hệ số chuẩn hóa là:

Tính toán giá trị trên cho kết quả hệ số chuẩn hóa là 1.1094. Hệ số chuẩn hóa này sẽ sử dụng cho bước tiếp theo, đó là tính toán đầu ra cho nơron.

Một phần của tài liệu Tìm hiểu mạng kohonen và cài đặt ứng dụng (Trang 25 - 27)

Tải bản đầy đủ (DOC)

(57 trang)
w