+ HS nắm vững quy tắc chia đa thức cho đơn thức.
- Kỹ năng:Thực hiện đúng phép chia đa thức cho đơn thức (chủ yếu trong trờng hợp chia hết).Biết trình bày lời giải ngắn gọn (chia nhẩm từng đơn thức rồi cộng KQ lại với nhau).
- Thái độ: Rèn tính cẩn thận, t duy lô gíc.
II.ph ơng tiện thực hiện.
- GV: Bảng phụ. - HS: Bảng nhóm.
Iii. Tiến trình bài dạy A. Tổ chức.
B. Kiểm tra bài cũ: GV đa ra đề KT cho HS:
- Phát biểu QT chia 1 đơn thức A cho 1 đơn thức B ( Trong trờng hợp A chia hết cho B) - Thực hiện phép tính bằng cách nhẩm nhanh kết quả.
a) 4x3y2 : 2x2y ; b) -21x2y3z4 : 7xyz2 ; c) -15x5y6z7 : 3x4y5z5 d) 3x2y3z2 : 5xy2 f) 5x4y3z2 : (-3x2yz)
Đáp án: a) 2xy b) -3xy2z2 c) -5xyz2 d) 3 2
5xyz e) 5 2 2
3 x y z
−
C.Bài mới:
Hoạt động của GV Hoạt động của HS
- GV: Đa ra vấn đề. Cho đơn thức : 3xy2
- Hãy viết 1 đa thức có hạng tử đều chia hết cho 3xy2. Chia các hạng tử của đa thức đó cho 3xy2 - Cộng các KQ vừa tìm đợc với nhau.
2 HS đa 2 VD và GV đa VD: + Đa thức 5xy3 + 4x2 - 10
3 y gọi là thơng của phép chia đa thức 15x2y5 + 12x3y2 - 10xy3 cho đơn thức 3xy2
GV: Qua VD trên em nào hãy phát biểu quy tắc: - GV: Ta có thể bỏ qua bớc trung gian và thực hiện ngay phép chia.
(30x4y3 - 25x2y3 - 3x4y4) : 5x2y3= 6x2 - 5 - 3 2
5x y
HS ghi chú ý
1) Quy tắc:
Thực hiện phép chia đa thức: (15x2y5 + 12x3y2 - 10xy3) : 3xy2 =(15x2y5 : 3xy2) + (12x3y2 : 3xy2) - (10xy3 : 3xy2)= 5xy3 + 4x2 - 10
3 y
* Quy tắc:
Muốn chia đa thức A cho đơn thức B ( Trờng hợp các hạng tử của A đều chia hết cho đơn thức B). Ta chia mỗi hạng tử của A cho B rồi cộng các kết quả với nhau.
* Ví dụ: Thực hiện phép tính: (30x4y3 - 25x2y3 - 3x4y4) : 5x2y3 = (30x4y3 : 5x2y3)-(25x2y3 : 5x2y3)- (3x4y4 : 5x2y3) = 6x2 - 5 - 3 2 5x y * Chú ý: Trong thực hành ta có thể Gv: Trần Duy Chung ?1
- GV dùng bảng phụ
Nhận xét cách làm của bạn Hoa. + Khi thực hiện phép chia.
(4x4 - 8x2y2 + 12x5y) : (-4x2) Bạn Hoa viết: 4x4 - 8x2y2 + 12x5y = -4x2 (-x2 + 2y2 - 3x3y) + GV chốt lại: … + GV: áp dụng làm phép chia ( 20x4y - 25x2y2 - 3x2y) : 5x2y - HS lên bảng trình bày. tính nhẩm và bỏ bớt 1 số phép tính trung gian. 2. áp dụng
Bạn Hoa làm đúng vì ta luôn biết Nếu A = B.Q Thì A:B = Q (A Q) B = Ta có:( 20x4y - 25x2y2 - 3x2y) = 5x2y(4x2 -5y - 3) 5 Do đó: [( 20x4y - 25x2y2 - 3x2y) : 5x2y =(4x2 -5y - 3) 5 ] D. củng cố * HS làm bài tập 63/28
Không làm phép chia hãy xét xem đa thức A có chia hết cho đơn thức B không? Vì sao? A = 15x2y+ 17xy3 + 18y2
B = 6y2
- GV: Chốt lại: Đa thức A chia hết cho đơn thức B vì mỗi hạng tử của đa thức A đều chia hết cho đơn thức B.
* Chữa bài 66/29
- GV dùng bảng phụ: Khi giải bài tập xét đa thức A = 5x4 - 4x3 + 6x2y có chia hết cho đơn thức B = 2x2 hay không?
+ Hà trả lời: "A không chia hết cho B vì 5 không chia hết cho 2"
+ Quang trả lời:"A chia hết cho B vì mọi hạng tử của A đều chia hết cho B"
- GV: Chốt lại: Quang trả lời đúng vì khi xét tính chia hết của đơn thức A cho đơn thức B ta chỉ quan tâm đến phần biến mà không cần xét đến sự chia hết của các hệ số của 2 đơn thức.
* Bài tập nâng cao. 4/36
1/ Xét đẳng thức: P: 3xy2 = 3x2y3 + 6x2 y2 + 3xy3 + 6xy2a) Tìm đa thức P a) Tìm đa thức P
b)Tìm cặp số nguyên (x, y) để P = 3
Đáp án a) P = (3x2y3 + 6x2y2 + 3xy3 + 6xy2) : 3xy2 = xy + 2x + y + 2 b) P = 3 ⇒xy + 2x + y + 2 = 3 ⇔x(y + 2) + (y + 2 ) = 3 ⇔(x + 1) (y + 2) = 3 = 1.3 = 3.1 = (-1).(-3) = (-3).(-1). E. H ớng dẫn học sinh học tập ở nhà - Học bài - Làm các bài tập 64, 65 SGK - Làm bài tập 45, 46 SBT Gv: Trần Duy Chung
chia đa thức một biến đã sắp xếp I. Mục tiêu: I. Mục tiêu:
- Kiến thức: HS hiểu đợc khái niệm chia hết và chia có d. Nắm đợc các bớc trong thuật toán phép chia đa thức A cho đa thức B.