Thiết kế bộ điều khiển lƣu lƣợng khí theo phƣơng pháp bƣớc

Một phần của tài liệu NGHIÊN CỨU ĐIỀU KHIỂN THÍCH NGHI CHO ĐỐI TƯỢNG CÓ ĐẶC TÍNH CỰC TRỊ (Trang 68)

3.4.1. Sơ đồ khối của bộ điều khiển tự động tìm cực trị kiểu bước

Với giả định là ở một nhiệt độ đặt nhất định (ứng với năng suất và yêu cầu nhiệt độ từng vùng của lò), mạch vòng ổn định lưu lượng dầu giữ lượng dầu phun vào lò ở một đại lượng cố định, nhiệm vụ của bộ điều khiển tự động tìm cực trị kiểu bước là tự động điều chỉnh lượng khí đưa vào để đốt với lượng dầu trên sao cho nhiệt độ của lò đạt cực đại. Qua phân tích, nghiên cứu ta chọn sơ đồ khối bộ điều chỉnh kiểu bước điều chỉnh lưu lượng khí tự động tìm cực trị như hình 3.6b.

Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn

Trong đó:

Đầu ra của đối tượng điều khiển là tọa độ x – chính là đại lượng chuyển dịch góc mở van khí; đầu ra của lò là nhiệt độ, chính là tọa độ y, được biến thành lượng điện áp đưa vào các bộ ghi nhớ nhờ sensor nhiệt độ; (CH) là động cơ chấp hành, (VA) là van gió, (MĐC) máy điều chỉnh được thiết kế, (LG) khối logic, (SS) khối so sánh, (GN) khối ghi nhớ các giá trị nhiệt độ dưới dạng điện áp, (FL) khối phát lệnh, khối này làm nhiệm vụ phát lệnh cho khối GN, SS, LG, làm việc, (T) khối tạo trễ.

Khối FL được thiết kế thực hiện tuần tự theo thuật toán bốn bước sau: Bước 1 : 1 0 0 0 Bước 2 : 0 1 0 0 Bước 3 : 0 0 1 0 Bước 4 : 0 0 0 1 Bước 5 : 1 0 0 0 ... LG CH KĐ MĐC GN T FL VAN Sensor nhiệt yk X2k Y2k Uyk Uyk+1 t0 SS Sensor tốc độ (-)

Hình 3.6b. Sơ đồ khối của bộ điều khiển tự động tìm cực trị kiểu bước

Khâu QT bậc nhất, có

trễ LL dầu

Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn

Các khối: Sensor nhiệt độ, khuếch đại (KĐ) làm nhiệm vụ lấy tín hiệu nhiệt độ dưới dạng điện áp ở các thời điểm đầu và cuối các bước đưa về khối ghi nhớ, sensor tốc độ làm nhiệm vụ lấy tín hiệu phản hồi tốc độ động cơ duới dạng điện áp đưa về máy điều chỉnh để điều chỉnh tốc độ trong mỗi bước.

3.4.2. Nguyên tắc làm việc của sơ đồ

Nguyên tắc làm việc của sơ đồ được thực hiện theo 4 bước như sau:

 Bước 1: Bộ phát lệnh (FL) phát lệnh tới khối logic (LG) điều khiển động cơ chấp hành (CH) quay dịch mở van gió một bước +x , đồng thời phát lệnh cho bộ ghi nhớ (GN), ghi nhớ giá trị nhiệt độ ban đầu dưới dạng điện áp Uyk.

 Bước 2: Bộ phát lệnh tạo thời gian trễ để nhiệt độ của lò thay đổi

 Bước 3: Bộ phát lệnh phát lệnh cho bộ ghi nhớ, ghi nhớ giá trị Uyk+1.

 Bước 4: Bộ phát lệnh phát lệnh so sánh 2 giá trị trong các bộ nhớ . * Nếu: yk = Uyk+1 - Uyk > c ( nhiệt độ lò đang tăng lên)

Trong đó c là một số dương cho trước là ngưỡng tác động của khối logic, bộ phát lệnh tiếp tục phát lệnh tới khối logic điều khiển động cơ chấp hành quay dịch mở van khí một bước x nữa, và phát lệnh cho bộ ghi nhớ, ghi nhớ giá trị Uyk+1 . Quá trình lặp lại theo chu kỳ như trên cho tới khi tìm được cực trị (đây là quá trình tìm cực trị ).

* Nếu: yk = Uyk+1 - Uyk < - c (điểm làm việc vượt qua giá trị cực đại)

Thì khối logic điều khiển động cơ quay ngược lại đóng bớt van gió một bước x và lúc này hệ đã tìm được cực trị và chuyển sang quá trình duy trì cực trị.

* Nếu: - c < yk = Uyk+1 -Uyk < c khối logic không tác động, động cơ không quay lưu lượng khí cấp vào mỏ đốt được giữ cố định và hệ làm việc ở vùng cực trị.

Tuy nhiên giá trị nhiệt độ ở bước 1 và bước 3 vẫn được bộ ghi nhớ ghi lại để kiểm tra và duy trì điểm làm việc xung quanh điểm cực trị.

Như vậy nhờ thuật toán điều khiển kiểu bước như trên hệ đã thực hiện hai quá trình, quá trình thứ nhất là quá trình tìm cực trị và quá trình thứ hai là quá trình duy trì điểm

Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn

làm việc tại cực đại, bằng việc tính chọn mức ngưỡng của phần tử logic hợp lý và trong khoảng sai số cho phép ta có vùng làm việc không nhạy mà ở đó, hệ làm việc trong vùng cực trị mà không bị dao động.

Ở đây thuật toán của ta là thực hiện bước đều (x xác định trước), nếu ta tính toán đưa ra nhiều ngưỡng so sánh c1, c2, c3… (c1< c2< c3), tương ứng với các góc mở

x1< x2< x3, ...), với sai lệch càng lớn thì góc mở càng lớn, thì hệ thống sẽ nhanh chóng tiến đến điểm cực đại.

Hoặc trong những hệ thống yêu cầu chất lượng điều khiển cao hơn, ta có thể lấy

k

y

 làm hệ số khuếch đại cho giá trị Uđk động cơ chấp hành. Như vậy sẽ thực hiện góc mở van “vô cấp” theo sai lệch của nhiệt độ. Tuy nhiên với thuật toán này, hệ thống chỉ có lợi ở vùng làm việc xa điểm cực trị. Khi đó sai lệch yk lớn, bước dịch chuyển lớn, nên hệ nhanh tiến về điểm cực trị. Ở vùng lân cận điểm cực trị yk nhỏ, bước dịch chuyển nhỏ nên hệ tiến đến cực trị lâu hơn, hình 3.7.

Hình 3.7. Sai lệch yk ở các vùng khác nhau trên đặc tính cực đại

Do vậy trên thực tế ta nên dùng thuật toán bước theo cấp. Tức là khi ở xa điểm cực đại, hệ thực hiện bước nhảy lớn, khi gần đến điểm cực đại hệ thực hiện bước đều, với bước nhảy nhỏ hơn.

0 20 40 60 80 100 120 140 0 200 400 600 800 1000 1200 1400 Thoi gian (s) N h ie t d o

Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn

Sensor tốc độ lấy tín hiệu phản hồi tốc độ động cơ dưới dạng điện áp đưa về cùng với máy điều chỉnh để điều chỉnh tốc độ động cơ trong mỗi bước.

3.4.3. Thiết lập sơ đồ nguyên lý

Hệ thống gồm các bộ phận chính sau:  Bộ phát lệnh (FL)  Bộ ghi nhớ (GN)  Bộ so sánh (SS)  Máy điều chỉnh (MĐC)  Động cơ chấp hành (CH) ... 3.4.3.1. Bộ phát lệnh

Nhiệm vụ của bộ phát lệnh là phát lệnh cho bộ điều khiển làm việc theo chu kỳ 4 bước với chu kỳ bằng 8(s) và có thể điều chỉnh chu kỳ được, để tạo ra chu kỳ 8(s) có thể điều chỉnh được ta nhờ bộ tạo thời gian trễ. Sau khi nghiên cứu ta chọn bộ tạo thời gian trễ như hình 3.8.

Vi mạch 555 bao gồm hai khuyếch đại thuật toán thực hiện chức năng so sánh, một trigơ, một tranistơr, vi mạch có 8 chân

1- nối với cực âm nguồn, 2- kích lật 3- cổng ra, 4- khóa, 5- lọc nhiễu, 6- ngưỡng lật, 7- chân phóng điện, 8- chân nối cực dương

Chu kỳ xung T = t1 + t2; t1 = 0,693 C7R11; t2 = 0,693 C7R12. Vi mạch 4017 là bộ chia 10 cùng với vi mạch 555 tạo thành bộ tạo thời gian trễ.

Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn

Biến trở R11 để điều chỉnh chu kỳ xung chủ đạo phát ra từ vi mạch 555. Chọn chu kỳ bộ phát lệnh T = 8(s), thì R11 = 33 K, R12 = 33K, C7 = 2.2µF, để điều chỉnh chu kỳ xung ta chọn R11 là loại biến trở 50K.

Kết quả mô phỏng xung nhịp và xung ra của mạch tạo thời gian trễ như hình 3.9.

Hình 3.9. Kết quả mô phỏng xung ra mạch tạo thời gian trễ

Để phát lệnh cho bộ điều khiển làm việc theo chu kỳ 4 bước ta thiết kế bộ phân phối 4 bước, nhiệm vụ của bộ phân phối tạo ra 4 bước, thực hiện bằng thuật toán sau:

Bước 1 1 0 0 0 Bước 2 0 1 0 0 Bước 3 0 0 1 0 Bước 4 0 0 0 1

Sau khi nghiên cứu ta có sơ đồ nguyên lý bộ phân phối 4 bước như trên hình 3.10.

Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn

Bộ phân phối này được tạo nên nhờ hai vi mạch 4013BP và 4001BP, vi mạch 4013BP gồm hai flip-flop D, vi mạch 4001BP gồm 4 phần tử NOR, điện áp cấp nguồn cho hai vi mạch +3 ÷ +15v

Nguyên lý làm việc của mạch như sau: Khi chưa có tín hiệu từ bộ tạo thời gian trễ đến giả sử các đầu ra Q1 của 4001 ở mức cao “H”, nên các đầu ra II, III, IV của 4001 ở mức thấp “L”, đầu ra I ở mức cao “H”, đây là trạng thái thứ nhất của bộ phân phối 4 bước, 1 0 0 0 (cũng chính là trạng thái khi bắt đầu làm việc).

Ở sườn dương của xung thứ nhất từ bộ thời gian trễ đưa đến, đầu ra Q1 của U11A ở mức cao, đầu ra Q1 của U11B ở mức cao, nên đầu ra II của 4001 (U10D) chuyển lên mức cao, các đầu ra I,III,IV của 4001 ở mức thấp, đây là trạng thái thứ hai của bộ phân phối 4 bước, 0 1 0 0.

Ở sườn dương của xung thứ hai từ bộ thời gian trễ đưa đến, đầu ra Q1 của U11A ở mức thấp, đầu ra Q1 của U11B ở mức cao, nên đầu ra III của 4001 (U10D) chuyển lên mức cao, các đầu ra I, II, IV của 4001 ở mức thấp, đây là trạng thái thứ ba của bộ phân phối 4 bước, 0 0 1 0

Ở sườn dương của xung thứ ba từ bộ thời gian trễ đưa đến, đầu ra Q1 của U11A ở mức cao, đầu ra Q1 của U11B ở mức thấp, nên đầu ra IV của 4001 (U10D) chuyển lên mức cao, các đầu ra I,II,III của 4001 ở mức thấp, đây là trạng thái thứ tư của bộ phân phối 4 bước, 0 0 0 1

Trạng thái của mạch luôn chỉ có một đầu ra mức cao còn các đầu ra khác ở mức thấp nên không cần thiết kế mạch tự khởi động, như vậy mạch cứ tuần tự lặp lại các trạng thái như trên đúng theo yêu cầu của bộ phát lệnh, xung nhịp lấy từ đầu số 12 của 4017 (mạch tạo thời gian trễ), đưa vào đầu CP1(3) của 4013 thứ nhất U11A, như vậy bằng việc ghép mạch tạo thời gian trễ và bộ phân phối 4 bước ta có bộ phát lệnh đáp ứng các yêu cầu điều khiển đề ra, việc điều chỉnh chu kỳ của bộ phát lệnh được thực hiện bằng việc điều chỉnh biến trở R1 của bộ tạo thời gian trễ. Đồ thị dạng sóng đầu vào xung nhịp và đầu ra như hình 3.11, mạch điện bộ phát lệnh như hình 3.12.

Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn

Hình 3.11. Đồ thị dạng sóng đầu vào xung nhịp và đầu ra

 Đường 1. Biểu diễn tín hiệu ra ở đầu ra I của bộ phân phối bốn bước

 Đường 2. Biểu diễn tín hiệu ra ở đầu ra II của bộ phân phối bốn bước

 Đường 3. Biểu diễn tín hiệu ra ở đầu ra III của bộ phân phối bốn bước

 Đường 4. Biểu diễn tín hiệu ra ở đầu ra IV của bộ phân phối bốn bước

Hình 3.12. Mạch điện bộ phát lệnh

Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn

Để ghi nhớ các giá trị nhiệt độ dưới dạng điện áp ta chọn phần tử nhớ bằng tụ điện CI& CII. Các tụ điện này phải đảm bảo đủ năng lượng để cho bộ so sánh làm việc chính xác và có khả năng giữ được năng lượng trong chu kỳ làm việc, nếu chọn C lớn thời gian phóng điện dài khi so sánh tụ vẫn giữ một điện áp dư, nếu chọn C nhỏ tụ sẽ không đủ năng lượng để so sánh, ở đây ta tính C sao cho năng lượng đủ mở tầng khuyếch đại vi sai của khuếch đại thuật toán, và tính đến lượng điện tích dò do độ ẩm và nhiệt độ cao, sau khi tính toán ta chọn C = 10 F

Để trích mẫu điện áp (ở đầu và cuối bước) phản hồi lấy từ sensor nhiệt độ về ta dùng cổng công tắc dùng vi mạch. Nhiệm vụ của

cổng công tắc là đóng mở các tín hiệu sau khi có xung điều khiển ở mức cao “H”, hoặc thấp “L”, ở đây ta chọn cổng công tắc là vi mạch 4066, đây là IC thông dụng nhiệm vụ của các chân là: Chân (14) cấp nguồn +12v, (7) GND,

các công tắc ( 1-2), ( 3-4 ), ( 8-9 ), (10- 11 ) được đóng khi các chân điều khiển tương ứng (13), (5), (6), (12), được tác động ở mức cao “H”, tần số làm việc khoảng 90MHz, sơ đồ như hình 3.13.

Nguyên lý làm việc được giải thích như sau: Khi SW1,2 đóng tụ C5 được nạp và ghi nhớ giá trị điện áp Uy1 (giá trị điện áp ứng với nhiệt độ tại thời điểm t1), khi SW4,3 đóng tụ C6 được nạp và ghi nhớ giá trị điện áp Uy2 (giá trị điện áp ứng với nhiệt độ tại thời điểm t2), khi SW8,9 & SW10,11 đóng hai điện áp này được đưa vào khâu so sánh.

3.4.3.3. Mạch so sánh

Mạch so sánh có nhiệm vụ so sánh hai giá trị nhiệt độ dưới dạng điện áp tại thời điểm đầu và cuối của của mỗi bước Uyk và Uyk+1, hiệu của hai giá trị điện áp này được đưa vào khâu logic, ta chọn bộ so sánh dùng khuếch đại thuật toán LM2904P sơ đồ mạch điện như hình 3.14.

Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn

Hình 3.14. Sơ đồ nguyên lý mạch so sánh

Điện áp ở đầu ra bằng yk = Uyk+1–Uyk, các điện trở R7=R8=R9 =R10=100 KΩ. (để tạo ra khoảng thời gian trễ  = 0,1s, tụ điện của bộ ghi nhớ ta chọn bằng 10 F nên các điện trở chọn bằng 100K).

Sơ đồ mạch điện ghép bộ ghi nhớ và so sánh như hình 3.15.

Hình 3.15. Sơ đồ mạch điện ghép bộ ghi nhớ và khâu so sánh

3.4.3.4. Động cơ chấp hành (CH)

Động cơ mở van có công suất nhỏ (vài chục W), đối với các hệ thống cũ thường sử dụng động cơ điện một chiều kích từ độc lập. Ngày nay với sự tiến bộ của kỹ thuật vi

Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn

xử lý và bán dẫn, hệ truyền động xoay chiều đang dần thay thế các hệ truyền động điện một chiều. Đề tài này lựa chọn động cơ mở van là động cơ xoay chiều một pha rotor lồng sóc.

Để thay đổi tốc độ của động cơ ta sử dụng bộ biến đổi xoay chiều – xoay chiều một pha.

Đặc điểm cấu tạo của động cơ xoay chiều một pha roto lồng sóc là phía stator có hai cuộn dây đặt lệch nhau 900 trong không gian, một trong hai cuộn nối tiếp với tụ điện. Cuộn dây nối tiếp với tụ điện làm chức năng của cuộn khởi động. Cuộn làm việc là cuộn nối trực tiếp với nguồn. Việc thay đổi vị trí của cuộn khởi động và cuộn làm việc sẽ thay đổi chiều quay của động cơ.

a. Điều khiển tốc độ động cơ

Để biến đổi một điện áp xoay chiều thành một điện áp xoay chiều khác cùng tần số nhưng có giá trị khác thì phương pháp thường dùng nhất là ta dùng máy biến áp. Máy biến áp có ưu điểm là kết cấu gọn nhẹ, làm việc tin cậy cao, nếu điện áp nguồn là sin thì điện áp ra cũng sin. Tuy nhiên máy biến áp có giá thành tương đối cao và rất khó thay đổi trơn điện áp ra. Khi yêu cầu điều chỉnh trơn điện áp trong phạm vi rộng thì người ta dùng Bộ biến đổi (BBĐ) xoay chiều – xoay chiều một pha, làm việc trên nguyên tắc sử dụng tính chất có điều khiển của thiết bị bán dẫn từ đó cắt đi một phần trong mỗi nửa chu kì của điện áp nguồn xoay chiều hình sin cho ra điện áp có giá trị nhỏ hơn điện áp nguồn.

Bộ biến đổi này cũng có ưu điểm là gọn nhẹ, hiệu suất cao, làm việc tin cậy, có khả năng điều chỉnh trơn điện áp ra, nhưng nhược điểm là hạn chế về công suất do các thiết bị bán dẫn, điện áp ra không phải là hình sin khi điện áp nguồn là sin. Trong trường hợp này, động cơ mở van có công suất nhỏ thì việc lựa chọn BBĐ là là một giải pháp tối ưu.

Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn

Một phần của tài liệu NGHIÊN CỨU ĐIỀU KHIỂN THÍCH NGHI CHO ĐỐI TƯỢNG CÓ ĐẶC TÍNH CỰC TRỊ (Trang 68)

Tải bản đầy đủ (PDF)

(113 trang)