động (motion vector).
Trong dòng tín hiệu video thông thường, các khung liền nhau thường giống nhau. Do vậy trong dự báo Interframe một chiều (tức lấy khung liền trước làm ảnh dự báo cho khung liền sau), giá trị dự báo rất gần giá trị ảnh thực tế dẫn tới sai số dự báo nhỏ, tốc độ dòng bit dữ liệu nhỏ.
Khi có chuyển động xảy ra, các điểm có cùng vị trí trong hai khung liền nhau là rất khác biệt. Do vậy sai số dự báo tăng lên, tốc độ bit tăng lên và hiệu suất nén giảm. Với trường hợp ảnh động, nếu chọn ảnh dự báo là khung liền
Bước lượng tử quá lớn_Nhiễu hạt
Bước lượng tử quá nhỏ_tràn
Tín hiệu giải mã S1(n) Tín hiệu đầu vào
trước sẽ không hợp lý. Để tạo một khung dự báo tối ưu ở đây ta phải sử dụng khái niệm “bù chuyển động” (motion compensation).
Do chuyển động, sự tương đồng giá trị của hai khung kề nhau sẽ giảm nhưng nội dung ảnh chỉ thay đổi theo nguyên tắc: vật thể đã xuất hiện ở khung trước chỉ thay đổi vị trí ở khung ảnh kế sau.
Quá trình tìm kiếm hướng chuyển động của vật thể gọi là “ước lượng chuyển động” (motion estimation). Kết quả về sự chuyển dịch của vật thể theo hai hướng x, y được phản ánh bằng giá trị vectơ gọi là “vectơ chuyển động” (motion vector).
Khi có chuyển động, ảnh dự báo không phải là ảnh trước đó mà là ảnh có bù chuyển động.
Giá trị sai số dự báo:
P=khung trước đó- khung hiện hành + vectơ chuyển động Nên vẫn giữ được giá trị rất nhỏ.
Nếu quan sát sai số dự báo, ta dễ thấy được chất lượng dự báo có bù chuyển động. Ảnh tạo bởi tín hiệu sai số biến đổi có bù chuyển động đen hơn rất nhiều trường hợp dự báo không bù chuyển động.