Thiết kế các nút chuyển mạch

Một phần của tài liệu Thiết kế mô phỏng báo hiệu số 7 trong mạng GSM (Trang 61 - 80)

. CHƯƠNG II: CÁC MỤC TIÊU CẦN ĐẠT VÀ KẾ HOẠCH THIẾT KẾ

3.1. Thiết kế các nút chuyển mạch

Việc thiết kế ở đây là chọn ra mô hình thích hợp cho các nút mạng báo hiệu chứ không phải là thiết kế mạch điện. Các nút của mạng báo hiệu chính là các điểm báo hiệu SP và các điểm chuyển báo hiệu STP. Việc chọn mô hình cho các SP và các STP là rất quan trọng, vì mạng có đảm bảo cho tương lai không và giá thành có hợp lý không là nhờ vào phần lớn bước đi đầu này.

Mạng báo hiệu số 7 đặc trưng bởi sự tách biệt với mạng thoại, do đó cấu trúc của nó có thể chọn tới mức tối ưu mà không ảnh hưởng tới mạng thoại.

61

PSTN GSM ISC TE TA LE MS HÀ NỘI T.P. HỒ CHÍ MINH

Đầu tiên ta chọn các cấp cho tổng đài mạng. Việc chọn các cấp này tuỳ thuộc vào qui mô lớn hay nhỏ của mạng, tức là tuỳ thuộc vào dân số và nhu cầu sử dụng mạng viễn thông của các vùng trong nước.

Cấu trúc mạng có thể xây dựng như sau:

Ở hình trên:

ISC : Tổng đài cổng quốc tế. TE : Tổng đài trung kế quốc gia. TA : Tổng đài tandem vùng.

ISC: Đảm bảo việc giao tiếp giữa ta với các nước khác có quan hệ viễn thông với nhau. Hiện nay nước ta có thể đặt 3 cổng quốc tế tại Hà Nội, Đà Nẵng và Thành Phố Hồ Chí Minh vì nước ta có quan hệ viễn thông khá rộng rãi với các nước khác, khi xảy ra tắc nghẽn trên một tuyến nào đó trong 3 tuyến thì việc chọn tuyến sẽ dễ dàng hơn và có khả năng an toàn cao hơn.

TE: Chịu trách nhiệm liên hệ giữa các miền của đất nước đặc biệt là hai miền Bắc - Nam vì nhu cầu viễn thông ở hai niền này là cao nhất nên cũng chỉ cần đặt hai tổng đài trung kế quốc gia tại Hà Nội và T.P.Hồ Chí Minh. Khi nhu cầu viễn thông lớn nhiều nữa thì có thể đặt thêm một TE ở Đà Nẵng vì hiện nay, mạng viễn thông ở Đà Nẵng mới chỉ phát triển và bản thân Đà Nẵng cũng chỉ là một vùng nhỏ.

TA: Liên hệ giữa các vùng trong một miền giữa ba miền Bắc, Trung, Nam đều phải có Tandem, số Tandem được tính toán cụ thể tuỳ theo số vùng trong một miền.

LE: Là tổng đài vô tuyến, nó quản lý thuê bao trong địa hạt của nó nên số LE được tính theo số thuê bao trong vùng.

Phương pháp tính toán:

Căn cứ vào dân số và nhu cầu sử dụng mạng viễn thông trong từng vùng, căn cứ vào dung lượng của tổng đài hiện có ta tính được số tổng đài nội hạt trong một vùng.

Khi đã được số các tổng đài nội hạt trong vùng ta lại tính số Tandem cần có thể chuyển thông tin giữa các tổng đài Local trong một vùng với nhau, giữa các Local của 3 niền khác nhau và các cuộc gọi đi quốc tế vì các kiểu cuộc gọi như vậy đều đi qua tổng đài Tandem.

Việc tính toán như vậy tuỳ thuộc vào tỷ lệ tương đối giữa các kiểu cuộc gọi, số vùng trong địa bàn Tandem quản lý. Chúng ta không thể thiết kế dung lượng dư thừa để thoả mãn mọi kiểu cuộc gọi vào mọi thời điểm được vì như thế không những gây tốn kém rất nhiều mà còn gây lãng phí và thất thu cho cơ quan chủ quản viễn thông.

Tiếp đó ta thiết kế các trung kế quốc gia, các trung kế này chịu trách nhiệm với các cuộc gọi ở giữa các miền với nhau.

Các cổng quốc tế gồm 3 tổng đài đặt ở 3 miền, chúng đảm bảo các cuộc gọi từ trong nước ra và từ ngoài vào, việc đấu nối các cổng quốc tế với nước ngoài có thể thực hiện bằng cáp quang, vệ tinh ...

3.2. Thiết kế mạng truyền dẫn số:

Một mạng truyền dẫn gồm có các nút và hệ thống truyền tải. Để đảm bảo an toàn về thiết bị và mạng lưới, chúng ta phải xét đến tổng đài và các kênh báo hiệu.

Về mặt thiết bị tổng đài mà nói thì bản thân mỗi thiết kế mạch đã có sẵn giải pháp an toàn cho thiết bị.

Ví dụ: CP (bộ xử lý trung tâm) và các RP (bộ xử lý vùng)...v.v. Đều có hai thành phần hoạt động song song với nhau, khi có lỗi xuất hiện trong thành phần đang hoạt động thì phần dự phòng và phần hoạt động sẽ tìm lỗi.

63

Nếu vì lý do nào đó phần hoạt động dừng hẳn thì phần dự phòng sẽ hoạt động thay.

Sau đây ta xét phương pháp định kích thước cho các đường báo hiệu: Thủ tục địng kích thước cho các LS như sau:

- Định nghĩa độ dài trung bình của MSU (Nm). Có thể đạt được nhờ trộn lẫn các dịch vụ và dãy báo hiệu.

- Chọn đồ thị dung lượng thích hợp theo Nm. - Chọn đường cong trên đồ thị theo EPM.

- Dùng yêu cầu GOS để đọc ra tải tối đa trên đường liên kết.

- Dùng số MUS chuyển trong 1 giây Ns để đọc ra trên đồ thị định kích thước số đường liên kết NL yêu cầu.

- Gấp đôi giá trị đọc ra vì lý do độ tin cậy. Giả thiết rằng chúng ta có hai kiểu cuộc gọi.

Các cuộc gọi trong nước (80%).

Dãy báo hiệu 1 (một hướng). IAM : 18 Octet.

SAM : 15 Octet. CLF : 12 Octet.

Các cuộc gọi ngoài nước (20%).

Dãy báo hiệu 2 (một hướng). IAM : 22 Octet.

SAM : 14 Octet. CLF : 12 Octet.

Độ dài trung bình tin tức dãy 1 là 15 Octet. Độ dài trung bình tin tức dãy 2 là 16 Octet. NM = 0,8 ∗ 15 + 0,2 ∗ 16 = 15,2 Ω.

Bước tiếp theo là chọn đồ thị dung lượng thích hợp. Chỉ có đồ thị thích hợp cho NM = 15 (gần đúng). Tính toán dung lượng: báo hiệu kênh N7.

D900 - 10W : Tổng độ trễ tính theo ms.

CCS 7 a : Tải lưu thông trên một đường liên kết bằng. BI = 6.400 Các MSU không tính truyền ngược lại đo bằng. NM : 15 Erlang.

NF : 16 BFI : Cường độ bit lỗi trên một liên kết báo hiệu. TL : 30 BI : Cường độ bit.

NM : Số các Octet của một khối tin báo hiệu. NF : Số Ocete khối báo hiệu điền đầy.

TL : Vòng thời gian truyền báo hiệu bao gồm cả thời gian xử lý trong các đầu cuối báo hiệu theo ms.

EPM : Khả năng lỗi trong MSU = BFI ∗ NM ∗ 8

Trong đồ thị dung lượng có các đường cong cho các giá trị khác nhau của EPM. EPM có thể được tính theo công thức sau:

EPM = BFI ∗ NM∗ 8

Giả thiết rằng cường độ bit lỗi đã đo được là: BFI = 0,000015 Khi đó ta có:

EPM = 0,000015 ∗ 15,2 ∗ 8 = 0,001824

Như vậy trong đồ thị quan hệ giữa W, a, EPM, ta có thể đọc ra giá trị của a tức là tải lưu thông trên một đường liên kết tính theo một đường bằng Erlang, a xấp xỉ 0,3 Erlang.

Ta lại giả thiết rằng số các MSU chuyển trong một giây khi tải bình thường là NS = 300.

65

f2

f2

Ví dụ về hai tổng đài đọc và viết thông qua bộ mềm dẻo

Viết Đọc

Bây giờ ta có thể đọc ra từ đồ thị định kích thước ( quan hệ giữa NL, NS, a) số đường liên kết theo yêu cầu là NL = 2.

Vì lý do độ tin cậy mạng, ta phải dùng 2 bộ đường liên kết với mỗi bộ có hai đường kiên kết. Việc định kích thước cho các STP có thể thực hiện bằng nhiều cách đơn giản. Giá trị bình thường cho tải STP, trong STP kết hợp khoảng 5% dung lượng bộ xử lý có thể dùng cho lưu thông STP có nghĩa là 10% khi có lỗi trong cặp STP.

Trên đây chỉ là một ví dụ nhỏ cho việc định kích thước cho các đường báo hiệu, trong thực tế các số liệu để tính toán không phải là các giá trị xác định, vì vậy nhiệm vụ của người thiết kế là phải nhìn một cách tổng quát vào xu hướng phát triển dịch vụ viễn thông trong từng vùng để tính toán một cách hợp lý, tránh được sự lãng phí khi thiết kế quá dư thừa cũng như việc thiết kế không đủ dung lượng dẫn tới tắc nghẽn trong mạng và mạng hoạt động một cách vô ích vẫn không nối được các thuê bao với nhau.

3.3 . Vấn đề đồng bộ mạng:

Trong hình sau, chúng ta thấy hai tổng đài. Một tổng đài hoạt động với tốc độ của nó. Trung gian giữa chúng được đặt một bộ đệm mềm dẻo (Elastic buffer). Chúng ta viết vào trong bộ đệm với tốc độ của tổng đài 1 (f1) và đọc ra với tốc độ của tổng đài 2 (f2). Nếu f1 và f2 khác nhau với tần số không đổi thì chúng ta sẽ không huỷ bỏ được sự tràn bộ đệm, sự gọi trượt trong khoảng thông thường. Nếu f2>f1 ta sẽ đọc nhanh hơn viết và các thông tin giống nhau bị lặp lại. Nếu f1>f2, thì ta viết nhanh hơn đọc, và như thế thông tin sẽ bị mất mát.

Để giảm tỷ lệ trượt chế ngự trên các tần số khác nhau giữa hai tổng đài, người ta đặt một đồng hồ giả để đồng bộ chúng với nhau. Bộ đệm mềm dẻo dù sao vẫn phải quan tâm đến sự thay đổi pha.

Giao diện trong 8 KHz Giao diện ngoài

RCF ETC ETC ICM ETC ETC Kênh số G 703 Kênh số G 703 Đồng hồ Cesi FDH 2048 KHz 1544 KHz 5 KHz 2048 KHz 300 KHz CLM CLM CLM

RCF: trường đồng hồ chuẩnvà các chuẩn đồng hồ

CCM: (Cesium Clock Module): Đây là đồng hồ Cesi đặc biệt thích nghi với hệ thống AXE. Nó được sử dụng thông thường trong tổng đài quốc tế. Một đồng hồ Cesi là một con lắc nguyên tử không bị hoá già. CCM được đặc trưng bởi độ sai lệch tần là 7.10-12 trong CCITT sách xanh G 811.

RCM (Reference Clock Module): Đây là một lò dao động vững chắc được điều khiển bởi một bộ dao động tinh thể OCXO. Nó vẫn được coi là một chuẩn dự trữ cho tới khi mọi chuẩn khác bị lỗi. RCM tuân theo CCITT sách xanh G 812.

Bộ nhớ tần số của RCM: Độ lệch của RCM chỉ nhỏ hơn 1.10-10 trong một ngày, nhưng theo thời gian, độ lệch này cũng trở nên rất quan trọng và nó gây nên tác động pha khi RCM được đổi thành đồng hồ chuẩn hoạt động. Để ngăn cản độ lệch tần quá lớn, chức năng nhớ tần số sẽ lưu giữ giá trị tương ứng của sự sai pha giữa RCM và đầu ra CLM để bù tần số đầu ra RCM. Bộ nhớ tần số này được cập nhật 5,5 giờ một lần.

Bộ nhớ sự lệch tần của RCM: Khi một tổng đài được trang bị cả RCM và CCM thì RCM cũng có bộ nhớ lệch tần số. Sự hoá già của RCM được so sánh với CCM khi RCM đang ở chế độ dự phòng và được thực hiện 1 tuần 1 lần. Khi RCM được đổi sang chế độ hoạt động chính thì bộ nhớ độ lệch tần được bù theo sự đánh giá lệch tần cỡ 2.10-12.

Bộ giám sát chuẩn: Có 4 kiểu đồng hồ giám sát chuẩn trong AXE - 10. - Giám sát tần số (Frequency Supervision).

- Giám sát lơ đãng (Wander Supervision). - Giám sát ngắn ( Interrapt Supervision). - Giám sát goài ( Extenrnal Supervision).

Bộ đệm mềm dẻo: Bộ đệm này được đặt trong ETC, nó là một bộ đệm vòng, một khung rộng với độ trễ ít nhất là 18 micro giây. Khi độ rộng trượt

67

8 KHz từ chuẩn X

125 micro giây

e Đầu đưa ra chuyển mạch

Bộ đo sai pha Bộ điều chỉnh Bộ dao động điều khiển

e u

x y

8 KHz 4 KHz

Vòng khoá pha trong CLM

là một khung thì có nghĩa là đã bị mất hoặc lặp lại 1 byte trong một kênh khi trượt xuất hiện. Độ trễ này rất cần thiết để ngăn cản sự lặp lại trượt. Ví dụ như các tín hiệu có thể bị làm hỏng khi có hiện tượng nhanh pha (jitter) hay chậm pha (Wander) thì ta cần phải có giới hạn mỗi khi trượt xuất hiện.

Vòng khoá pha PLL: Trong CLM chúg ta có thể tìm thấy vòng khoá pha PLL (như hình sau).

Trên đây ngụ ý rằng cần phải biết chất lượng của chuẩn mà ta đo lại. Các chuẩn đồng hồ trong AXE phải được phân phối bất kỳ lúc nào trên sự so pha với đầu ra CLM phải được kiểm tra thường xuyên, trong thực tế là cứ 4 lần trong một giây. Sẽ càng sớm càng tốt nếu như các chức năng giám sát khám phá ra rằng một chuẩn đồng hồ đã vượt qua giới hạn lệch tần của chính nó, khi đó, một bộ xử lý sẽ được khởi động để định ra chuẩn nào sai.

Để thu được lợi ích một cách đầy đủ của bộ giám sát tần số thì phải có ít nhất 3 chuẩn đồng hồ nối vào nó. Hai nguồn nối đến từ cùng một nguồn không phải là độc lập với nhau và đó là cơ hội tốt để thay đổi tần số của cái tồi hơn một cách kịp thời.

Hơn nữa việc nhân đôi các liên kết vì lý do tin cậy sẽ rất dễ dàng cho việc thay đổi chuẩn đồng hồ.

Nếu ta chỉ có hai chuẩn độc lập, ta sẽ tìm ra cả hai độ lệch so với điểm chuẩn giữa, nhưng khi đó ta sẽ không biết cái nào là sai. Với trường hợp đó, ta tiếp nhận một báo động trên một giám sát tần số nơi mà chuẩn thực hiện và chuẩn hiển thị lỗi được biểu diễn. Nếu lỗi hiển thị và chuẩn biểu diễn trở thành giống nhau thì đồng hồ chuẩn sẽ được dừng lại.

Bộ giám sát Wander: Sự chậm hay nhanh của các tần số lớn hơn 2Hz được giám sát bởi việc tính toán sai pha giữa hai lần đo liên tiếp. Khi giới hạn chậm hay nhanh pha đã quá ở hai đầu ra trong 10 lần đo liên tiếp thì chuẩn đang bị nghi ngờ sẽ được dừng lại.

ISC

TE

TA

LE

Clockchuẩn

Giả pháp đồng bộ khi có nguồn Clock nguyên tử chuẩn quốc gia

Clock ngoài Đồng bộ Đồng bộ ISC TE TA LE

Giải pháp đồng bộ khi không có nguồn Clock nguyên tử chuẩn quốc gia

Đồng bộ

Bộ giám sát interrupt: Nếu không tìm ra 1 tín hiệu nào trong vòng 100 lần đo thì chuẩn bị dừng.

Bộ giám sát ngoài: Bộ giám sát ngoài được đặt trong FTC và bộ giám sát này có chứa các tín hiệu báo động AIS, sự mất các khung thẳng LQS, và các đầu cuối báo hiệu mạng SNT.

Việc thay đổi MODE đồng bộ: Việc thay đổi các cấu hình đồng bộ mạng sẽ tốt hơn nếu được thực hiện trong khi tổng đài đang hoạt động vì việc dừng tổng đài là một việc hết sức tai hại, AXE 10 đặc trưng bởi hai vùng dữ liệu, một vùng hoạt động còn một vùng dự phòng. Khi thay đổi các cấu hình đồng bộ, ta chỉ việc sang vùng dự phòng, làm các phép đo và kiểm tra thông suốt trước khi kích hoạt bằng một lệnh đơn giản.

Giải pháp về nguồn đồng bộ: Khi chúng ta có nguồn Clock nguyên tử chuẩn quốc gia, ta chỉ cần cung cấp xung đồng hồ cho các cấp của mạng (hình sau).

Tất nhiên khi có nguồn Clock nguyên tử chuẩn quốc gia, những yêu cầu về độ tin cậy của nguồn Clock phải được bảo đảm như đã nêu ở phần trên.

Khi không có nguồn Clock nguyên tử chuẩn quốc gia, chúng ta lấy nguồn Clock từ bên ngoài. Cấp ISC lấy đồng bộ với tổng đài cổng quốc tế của nước ngoài, sau đó các cấp sau lại đồng bộ theo các cấp trên của nó với tiêu chuẩn về sai số là:

ISC : 10-10 s/ ngày TE : 10-9 s/ ngày TA : 10-8 s/ ngày LE : 10-7 s/ ngày 69 TRẦN VIỆT DŨNG - - ĐTVT LỚP K6

BSC 1 Mạng PSTN Mạng GSM MSC BSC 2 BSC 3 BTS MS MSC BSC 5 BSC 4 BSC 6 1 ĐườngNo.7 BTS BTS BTS BTS BTS MS

Miền Bắc Miền Trung Miền

ISC TE TA STP SP LAPDm 4 đường No.7 4 đường No.7 4 đường No.7 2 ĐườngNo.7

2 đường No.7 1 đường No.7 1 đường No.7 4 đường No.7

Một phần của tài liệu Thiết kế mô phỏng báo hiệu số 7 trong mạng GSM (Trang 61 - 80)

Tải bản đầy đủ (DOCX)

(94 trang)
w